Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 160, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835014

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is a significant epidemiological problem worldwide. It is a pre-morbid, chronic and low-grade inflammatory disorder that precedes many chronic diseases. Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) could be used to treat MetS because they express high regenerative capacity, strong immunomodulatory properties and allogeneic biocompatibility. This study aims to investigate WJ-MSCs as a therapy against MetS in a rat model. METHODS: Twenty-four animals were fed with high-fat high-fructose (HFHF) diet ad libitum. After 16 weeks, the animals were randomised into treatment groups (n = 8/group) and received a single intravenous administration of vehicle, that is, 3 × 106 cells/kg or 10 × 106 cells/kg of WJ-MSCs. A healthy animal group (n = 6) fed with a normal diet received the same vehicle as the control (CTRL). All animals were periodically assessed (every 4 weeks) for physical measurements, serum biochemistry, glucose tolerance test, cardiovascular function test and whole-body composition. Post-euthanasia, organs were weighed and processed for histopathology. Serum was collected for C-reactive protein and inflammatory cytokine assay. RESULTS: The results between HFHF-treated groups and healthy or HFHF-CTRL did not achieve statistical significance (α = 0.05). The effects of WJ-MSCs were masked by the manifestation of different disease subclusters and continuous supplementation of HFHF diet. Based on secondary analysis, WJ-MSCs had major implications in improving cardiopulmonary morbidities. The lungs, liver and heart show significantly better histopathology in the WJ-MSC-treated groups than in the untreated CTRL group. The cells produced a dose-dependent effect (high dose lasted until week 8) in preventing further metabolic decay in MetS animals. CONCLUSIONS: The establishment of safety and therapeutic proof-of-concept encourages further studies by improving the current therapeutic model.


Assuntos
Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome Metabólica , Geleia de Wharton , Animais , Síndrome Metabólica/terapia , Síndrome Metabólica/patologia , Síndrome Metabólica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Ratos , Geleia de Wharton/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Injeções Intravenosas , Humanos , Dieta Hiperlipídica/efeitos adversos
2.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139796

RESUMO

Osteoarthritis (OA) is the most common type of arthritis and chronic joint disease, affecting more than 240 million people worldwide. Although there are numerous advances in using drugs in treating OA, the use of natural compounds has aroused much interest among researchers due to their safety margin. Recent discovery shows that natural compounds play an extensive role in the oxidative stress signaling pathway in treating OA. Thus, this review summarizes the commonly used natural compounds for treating OA focusing on the oxidative stress signaling pathway and its downstream mediators. Selected databases-such as Scopus, Web of Science, Nature, and PubMed-were used to search for potentially relevant articles. The search is limited to the last 15 years and the search was completed using the Boolean operator's guideline using the keywords of natural product AND oxidative stress AND osteoarthritis OR natural extract AND ROS AND degenerative arthritis OR natural plant AND free radicals AND degenerative joint disease. In total, 37 articles were selected for further review. Different downstream mechanisms of oxidative stress involved in the usage of natural compounds for OA treatment and anabolic and catabolic effects of natural compounds that exhibit chondroprotective effects have been discussed with the evidence of in vitro and in vivo trials in this review.

3.
Medicina (Kaunas) ; 56(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207632

RESUMO

Osteoarthritis (OA) is the most well-known degenerative disease among the geriatric and is a main cause of significant disability in daily living. It has a multifactorial etiology and is characterized by pathological changes in the knee joint structure including cartilage erosion, synovial inflammation, and subchondral sclerosis with osteophyte formation. To date, no efficient treatment is capable of altering the pathological progression of OA, and current therapy is broadly divided into pharmacological and nonpharmacological measures prior to surgical intervention. In this review, the significant risk factors and mediators, such as cytokines, proteolytic enzymes, and nitric oxide, that trigger the loss of the normal homeostasis and structural changes in the articular cartilage during the progression of OA are described. As the understanding of the mechanisms underlying OA improves, treatments are being developed that target specific mediators thought to promote the cartilage destruction that results from imbalanced catabolic and anabolic activity in the joint.


Assuntos
Cartilagem Articular , Osteoartrite , Idoso , Citocinas , Humanos , Inflamação , Articulação do Joelho , Osteoartrite/etiologia , Osteoartrite/terapia
4.
Polymers (Basel) ; 12(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202700

RESUMO

Gelatin possesses biological properties that resemble native skin and can potentially be fabricated as a skin substitute for full-thickness wound treatment. The native property of gelatin, whereby it is easily melted and degraded at body temperature, could prevent its biofunctionality for various applications. This study aimed to fabricate and characterise buffalo gelatin (Infanca halal certified) crosslinked with chemical type crosslinker (genipin and genipin fortified with EDC) and physicaly crosslink using the dihydrothermal (DHT) method. A porous gelatin sponge (GS) was fabricated by a freeze-drying process followed by a complete crosslinking via chemical-natural and synthetic-or physical intervention using genipin (GNP), 1-ethyl-3-(3-dimethylaminopropyl) (EDC) and dihydrothermal (DHT) methods, respectively. The physicochemical, biomechanical, cellular biocompatibility and cell-biomaterial interaction of GS towards human epidermal keratinocytes (HEK) and dermal fibroblasts (HDF) were evaluated. Results showed that GS had a uniform porous structure with pore size ranging between 60 and 200 µm with high porosity (>78.6 ± 4.1%), high wettability (<72.2 ± 7.0°), high tensile strain (>13.65 ± 1.10%) and 14 h of degradation rate. An increase in the concentration and double-crosslinking approach demonstrated an increment in the crosslinking degree, enzymatic hydrolysis resistance, thermal stability, porosity, wettability and mechanical strength. The GS can be tuned differently from the control by approaching the GS via a different crosslinking strategy. However, a decreasing trend was observed in the pore size, water retention and water absorption ability. Crosslinking with DHT resulted in large pore sizes (85-300 µm) and low water retention (236.9 ± 18.7 g/m2·day) and a comparable swelling ratio with the control (89.6 ± 7.1%). Moreover no changes in the chemical content and amorphous phase identification were observed. The HEK and HDF revealed slight toxicity with double crosslinking. HEK and HDF attachment and proliferation remain similar to each crosslinking approach. Immunogenicity was observed to be higher in the double-crosslinking compared to the single-crosslinking intervention. The fabricated GS demonstrated a dynamic potential to be tailored according to wound types by manipulating the crosslinking intervention.

5.
Stem Cells Int ; 2020: 9529465, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733574

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stem cells with strong immunosuppressive property that renders them an attractive source of cells for cell therapy. MSCs have been studied in multiple clinical trials to treat liver diseases, peripheral nerve damage, graft-versus-host disease, autoimmune diseases, diabetes mellitus, and cardiovascular damage. Millions to hundred millions of MSCs are required per patient depending on the disease, route of administration, frequency of administration, and patient body weight. Multiple large-scale cell expansion strategies have been described in the literature to fetch the cell quantity required for the therapy. In this review, bioprocessing strategies for large-scale expansion of MSCs were systematically reviewed and discussed. The literature search in Medline and Scopus databases identified 26 articles that met the inclusion criteria and were included in this review. These articles described the large-scale expansion of 7 different sources of MSCs using 4 different bioprocessing strategies, i.e., bioreactor, spinner flask, roller bottle, and multilayered flask. The bioreactor, spinner flask, and multilayered flask were more commonly used to upscale the MSCs compared to the roller bottle. Generally, a higher expansion ratio was achieved with the bioreactor and multilayered flask. Importantly, regardless of the bioprocessing strategies, the expanded MSCs were able to maintain its phenotype and potency. In summary, the bioreactor, spinner flask, roller bottle, and multilayered flask can be used for large-scale expansion of MSCs without compromising the cell quality.

6.
Rev Cardiovasc Med ; 21(2): 275-287, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32706215

RESUMO

Inflammation and oxidative stress are involved in the pathogenesis of cardiovascular diseases such as atherosclerosis, hypertension and ischemic heart disease. Natural products play an important role as nutritional supplements with potential health benefits in cardiovascular diseases. Polygonum minus (PM) is an aromatic plant that is widely used as a flavoring agent in cooking and has been recognized as a plant with various medicinal properties including antioxidative and anti-inflammatory actions. Phytoconstituents found in PM such as phenolic and flavonoid compounds contribute to the plant's antioxidative and anti-inflammatory effects. We conducted this review to systematically identify articles related to the antioxidative and anti-inflammatory activities of PM. A computerized database search was conducted on Ovid MEDLINE, PubMed, Scopus, and ACS publication, from 1946 until May 2020, and the following keywords were used: 'Kesum OR Polygonum minus OR Persicaria minor' AND 'inflammat* OR oxida* OR antioxida*'. A total of 125 articles were obtained. Another eight additional articles were identified through Google Scholar and review articles. Altogether, 17 articles were used for data extraction, comprising 16 articles on antioxidant and one article on anti-inflammatory activity of PM. These studies consist of 14 in vitro studies, one in vivo animal study, one combined in vitro and in vivo study and one combined in vitro and ex vivo study. All the studies reported that PM exhibits antioxidative and anti-inflammatory activities which are most likely attributed to its high phenolic and flavonoid content.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Flavonoides/uso terapêutico , Mediadores da Inflamação/antagonistas & inibidores , Inflamação/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Polygonum/química , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/efeitos adversos , Antioxidantes/isolamento & purificação , Flavonoides/efeitos adversos , Flavonoides/isolamento & purificação , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Transdução de Sinais
7.
Tissue Cell ; 46(4): 233-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24973262

RESUMO

The culture of human airway epithelial cells has played an important role in advancing our understanding of the metabolic and molecular mechanisms underlying normal function and disease pathology of airway epithelial cells. The present study focused on investigating the effects of human serum (HS) on the qualitative and quantitative properties of the human respiratory epithelium compared to the fetal bovine serum (FBS), as a supplement in culture. Respiratory epithelial (RE) cells derived from human nasal turbinate were co-cultured with fibroblasts, subsequently separated at 80-90% confluency by differential trypsinization. RE cells were then sub-cultured into 2 different plates containing 5% allogenic HS and FBS supplemented media respectively up to passage 1 (P1). Cell morphology, growth rate, cell viability and population doubling time were assessed under light microscope, and levels of gene expression were measured via real time reverse transcriptase-polymerase chain reaction (qRT-PCR). RE cells appeared as polygonal shape and expanded when cultured in HS whereas RE cells in FBS were observed to be easily matured thus limit the RE cells expansion. Proliferation rate of RE cells in HS supplemented media (7673.18 ± 1207.15) was 3 times higher compared to RE in FBS supplemented media (2357.68 ± 186.85). Furthermore, RE cells cultured in HS-supplemented media required fewer days (9.15 ± 1.10) to double in numbers compared to cells cultured in FBS-supplemented media (13.66 ± 0.81). Both the differences were significant (p<0.05). However, there were no significant differences in the viability of RE cells in both groups (p=0.105). qRT-PCR showed comparable expressions of gene Cytokeratin-14 (CK-14), Cytokeratin-18 (CK-18) and Mucin-5 subtype B (MUC5B) in RE cells cultured in both groups (p>0.05). In conclusion, HS is a comparatively better choice of media supplement in accelerating growth kinetics of RE cells in vitro thus producing a better quality of respiratory epithelium for future tracheal reconstruction.


Assuntos
Proliferação de Células , Técnicas In Vitro , Mucosa Respiratória/citologia , Soro/metabolismo , Animais , Bovinos , Técnicas de Cocultura , Regulação da Expressão Gênica , Humanos , Queratina-14/biossíntese , Queratina-18/biossíntese , Mucina-5B/biossíntese , Cultura Primária de Células , Soro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...