Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442182

RESUMO

SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab). LY-CoV1404 potently neutralizes authentic SARS-CoV-2 virus, including the prototype, B.1.1.7, B.1.351 and B.1.617.2). In pseudovirus neutralization studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant and retains binding to spike proteins with a variety of underlying RBD mutations including K417N, L452R, E484K, and N501Y. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved with the exception of N439 and N501. Notably, the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of reactivity to amino acid substitutions present among current VOC together with broad and potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants causing COVID-19. In BriefLY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and whose epitope is rarely mutated. HighlightsO_LILY-CoV1404 potently neutralizes SARS-CoV-2 authentic virus and known variants of concern including the B.1.1.529 (Omicron), the BA.2 Omicron subvariant, and B.1.617.2 (Delta) variants C_LIO_LINo loss of potency against currently circulating variants C_LIO_LIBinding epitope on RBD of SARS-CoV-2 is rarely mutated in GISAID database C_LIO_LIBreadth of neutralizing activity and potency supports clinical development C_LI

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-318972

RESUMO

SARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characterization revealed high-affinity binding to the receptor-binding domain, ACE2 binding inhibition, and potent neutralizing activity. In a rhesus macaque challenge model, prophylaxis doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract. These data demonstrate that high-throughput screening can lead to the identification of a potent antiviral antibody that protects against SARS-CoV-2 infection. One Sentence SummaryLY-CoV555, an anti-spike antibody derived from a convalescent COVID-19 patient, potently neutralizes SARS-CoV-2 and protects the upper and lower airways of non-human primates against SARS-CoV-2 infection.

3.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-7578

RESUMO

A 67-year-old man underwent two endoscopic submucosal dissection procedures, one for gastric adenoma and one for early gastric cancer. The follow-up endoscopy showed metachronous recurrence at the anterior wall of the lower body, for which he underwent a subtotal gastrectomy. Four first- or second-degree relatives in his family have been diagnosed with gastric or colon cancers. The patient underwent counseling and genetic testing to identify single nucleotide polymorphisms and indel variants for 31 genes by next generation sequencing. Five missense mutations were identified, one each in ATM, BRIP1, and EPCAM and two in BRCA2. These genetic alterations may be candidates for genetic causes of this familial cluster of gastric cancer. This study identified genes that, for the first time, can be potentially associated with an increased risk of familial gastric cancer among the Korean population. These results may be helpful in evaluating other genetic factors related to the etiology of gastric cancer.


Assuntos
Idoso , Humanos , Adenoma , Neoplasias do Colo , Aconselhamento , Endoscopia , Seguimentos , Gastrectomia , Neoplasias Gastrointestinais , Testes Genéticos , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Recidiva , Neoplasias Gástricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...