Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 17(11): 2221-2234, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714814

RESUMO

Digital PCR (dPCR) is emerging as an ideal platform for the detection and tracking of genomic variants in cancer due to its high sensitivity and simple workflow. The growing number of clinically actionable cancer biomarkers creates a need for fast, accessible methods that allow for dense information content and high accuracy. Here, we describe a proof-of-concept amplitude modulation-based multiplex dPCR assay capable of detecting 12 single-nucleotide and insertion/deletion (indel) variants in EGFR, KRAS, BRAF, and ERBB2, 14 gene fusions in ALK, RET, ROS1, and NTRK1, and MET exon 14 skipping present in non-small cell lung cancer (NSCLC). We also demonstrate the use of multi-spectral target-signal encoding to improve the specificity of variant detection by reducing background noise by up to an order of magnitude. The assay reported an overall 100% positive percent agreement (PPA) and 98.5% negative percent agreement (NPA) compared with a sequencing-based assay in a cohort of 62 human formalin-fixed paraffin-embedded (FFPE) samples. In addition, the dPCR assay rescued actionable information in 10 samples that failed to sequence, highlighting the utility of a multiplexed dPCR assay as a potential reflex solution for challenging NSCLC samples.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Reação em Cadeia da Polimerase , Mutação , Sequenciamento de Nucleotídeos em Larga Escala
2.
Anal Chem ; 93(51): 17020-17029, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34905685

RESUMO

Digital PCR (dPCR) is the gold-standard analytical platform for rapid high-precision quantification of genomic fragments. However, current dPCR assays are generally limited to monitoring 1-2 analytes per sample, thereby limiting the platform's ability to address some clinical applications that require the simultaneous monitoring of 20-50 analytes per sample. Here, we present virtual-partition dPCR (VPdPCR), a novel analysis methodology enabling the detection of 10 or more target regions per color channel using conventional dPCR hardware and workflow. Furthermore, VPdPCR enables dPCR instruments to overcome upper quantitation limits caused by partitioning error. While traditional dPCR analysis establishes a single threshold to separate negative and positive partitions, VPdPCR establishes multiple thresholds to identify the number of unique targets present in each positive droplet based on fluorescence intensity. Each physical partition is then divided into a series of virtual partitions, and the resulting increase in partition count substantially decreases partitioning error. We present both a theoretical analysis of the advantages of VPdPCR and an experimental demonstration in the form of a 20-plex assay for noninvasive fetal aneuploidy testing. This demonstration assay─tested on 432 samples contrived from sheared cell-line DNA at multiple input concentrations and simulated fractions of euploid or trisomy-21 "fetal" DNA─is analyzed using both traditional dPCR thresholding and VPdPCR. VPdPCR analysis significantly lowers the variance of the chromosomal ratio across replicates and increases the accuracy of trisomy identification when compared to traditional dPCR, yielding > 98% single-well sensitivity and specificity. VPdPCR has substantial promise for increasing the utility of dPCR in applications requiring ultrahigh-precision quantitation.


Assuntos
DNA , Testes Diagnósticos de Rotina , DNA/genética , Reação em Cadeia da Polimerase
3.
Anal Chem ; 93(9): 4208-4216, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631072

RESUMO

The gold standard of molecular pathogen detection is the quantitative polymerase chain reaction (qPCR). Modern qPCR instruments are capable of detecting 4-6 analytes in a single sample: one per optical detection channel. However, many clinical applications require multiplexing beyond this traditional single-well capacity, including the task of simultaneously testing for SARS-CoV-2 and other respiratory pathogens. This can be addressed by dividing a sample across multiple wells, or using technologies such as genomic sequencing and spatial arrays, but at the expense of significantly higher cost and lower throughput compared with single-well qPCR. These trade-offs represent unacceptable compromises in high-throughput screening scenarios such as SARS-CoV-2 testing. We demonstrate a novel method of detecting up to 20 targets per well with standard qPCR instrumentation: high-definition PCR (HDPCR). HDPCR combines TaqMan chemistry and familiar workflows with robust encoding to enable far higher levels of multiplexing on a traditional qPCR system without an increase in cost or reduction in throughput. We utilize HDPCR with a custom 20-Plex assay, an 8-Plex assay using unmodified predesigned single-plex assays from Integrated DNA Technologies and a 9-Plex pathogen panel inclusive of SARS-CoV-2 and other common respiratory viruses. All three assays were successful when tested on a variety of samples, with overall sample accuracies of 98.8, 98.3, and 100%, respectively. The HDPCR technology enables the large install base of qPCR instrumentation to perform mid-density multiplex diagnostics without modification to instrumentation or workflow, meeting the urgent need for increased diagnostic yield at an affordable price without sacrificing assay performance.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , DNA Viral/genética , Humanos , Sensibilidade e Especificidade
4.
Sci Rep ; 9(1): 1053, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705333

RESUMO

The real time polymerase chain reaction (rtPCR) is an essential method for detecting nucleic acids that has a wide range of clinical and research applications. Current multiplexed rtPCR is capable of detecting four to six nucleic acid targets in a single sample. However, advances in clinical medicine are driving the need to measure many more targets at once. We demonstrate a novel method which significantly increases the multiplexing capability of any existing rtPCR instrument without new hardware, software, or chemistry. The technique works by varying the relative TaqMan probe concentrations amongst targets that are measured in a single fluorometric channel. Our fluorescent amplitude modulation method generates a unique rtPCR signature for every combination of targets present in a reaction. We demonstrate this technique by measuring nine different targets across three color channels with TaqMan reporting probes, yielding a detection accuracy of 98.9% across all combinations of targets. In principle this method could be extended to measure 6 or more targets per color channel across any number of color channels without loss in specificity.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real/métodos , Ácidos Nucleicos/análise , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...