Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38422395

RESUMO

Macronutrient intake impacts physiology, behavior, and gene expression in a wide range of organisms. We used the response surface methodology to compare how life history traits, lifespan, and reproduction differ as a function of protein and carbohydrate intakes under choice and no-choice feeding regimens in the fruit fly, Drosophila melanogaster. We found that when offered a choice of nutritionally complementary foods mated female flies regulated toward a protein to carbohydrate ratio (P:C) that was associated with shortened lifespan and maximal egg production when compared to response surfaces derived from flies fed 1 of a range of fixed diets differing in P:C (no-choice regimen). This difference in lifespan between choice and no-choice feeding was not seen in males or virgin flies, reflecting the fact that increased protein intake is triggered by mating to support egg production. However, whereas in mated females a higher P:C intake was associated with greater egg production under both choice and no-choice feeding, contrary to expectations, choice-fed mated flies laid fewer eggs than no-choice flies on equivalent macronutrient intakes, perhaps reflecting that they had to ingest twice the volume of food to attain an equivalent intake of nutrients than no-choice flies on a diet of equivalent P:C ratio.


Assuntos
Drosophila melanogaster , Longevidade , Reprodução , Animais , Longevidade/fisiologia , Feminino , Drosophila melanogaster/fisiologia , Masculino , Reprodução/fisiologia , Carboidratos da Dieta , Dieta , Proteínas Alimentares/administração & dosagem , Comportamento de Escolha/fisiologia , Características de História de Vida , Comportamento Alimentar/fisiologia , Preferências Alimentares/fisiologia
2.
Pathol Res Pract ; 245: 154471, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37104960

RESUMO

The impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on lung tissue in patients on respiratory support is of significant scientific interest in predicting mortality. This study aimed to analyze post-mortem histological changes in the lung tissue of COVID-19 patients on respiratory support using vital radiology semiotics. A total of 41 autopsies were performed on patients who died of SARS-CoV-2 and had confirmed COVID-19 by polymerase chain reaction (PCR) and radiological evidence of lung tissue consolidation and ground glass opacity. The results showed that the duration of COVID-19 in patients on respiratory support was significantly associated with the development of all stages of diffuse alveolar damage, acute fibrous organizing pneumonia, pulmonary capillary congestion, fibrin thrombi, perivascular inflammation, alveolar hemorrhage, proliferating interstitial fibroblasts, and pulmonary embolism. The prediction model for lethal outcomes based on the duration of total respiratory support had a sensitivity of 68.3% and a specificity of 87.5%. In conclusion, for COVID-19 patients on long-term respiratory support with radiological signs of ground glass opacity and lung consolidation, post-mortem morphological features included various stages of diffuse alveolar lung damage, pulmonary capillary congestion, fibrin clots, and perivascular inflammation.


Assuntos
COVID-19 , Trombose , Humanos , COVID-19/patologia , SARS-CoV-2 , Pulmão/patologia , Trombose/patologia , Inflamação/patologia , Fibrina
3.
Biogerontology ; 21(5): 619-636, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32468146

RESUMO

Mortality in insects consuming high-protein-and-low-carbohydrate diets resembles a type III lifespan curve with increased mortality at an early age and few survivors that live a relatively long lifespan. We selected for a Drosophila line able to live for a long time on an imbalanced high-protein-low-carbohydrate diet by carrying out five rounds of breeding to select for the most long-lived survivors. Adaptation to this diet in the selected line was studied at the biochemical, physiological and transcriptomic levels. The selected line of flies consumed less of the imbalanced food but also accumulated more storage metabolites: glycogen, triacylglycerides, and trehalose. Selected flies also had a higher activity of alanine transaminase and a higher urea content. Adaptation of the selected line on the transcriptomic level was characterized by down-regulation of genes encoding serine endopeptidases (Jon25i, Jon25ii, betaTry, and others) but up-regulation of genes encoding proteins related to the immune system, such as antimicrobial peptides, Turandot-family humoral factors, hexamerin isoforms, and vitellogenin. These sets of down- and up-regulated genes were similar to those observed in fruit flies with suppressed juvenile hormone signaling. Our data show that the physiological adaptation of fruit flies to a high-protein-low-carbohydrate diet occurs via intuitive pathways, namely a decrease in food consumption, conversion of amino acids into ketoacids to compensate for the lack of carbohydrate, and accumulation of storage metabolites to eliminate the negative effects of excess amino acids. Nevertheless, transcriptomic adaptation occurs in a counter-intuitive way likely via an influence of gut microbiota on food digestion.


Assuntos
Adaptação Fisiológica , Dieta Rica em Proteínas , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Longevidade
4.
Cells ; 9(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225024

RESUMO

The insulin-IGF-1 signaling (IIS) pathway is conserved throughout multicellular organisms and regulates many traits, including aging, reproduction, feeding, metabolism, stress resistance, and growth. Here, we present evidence of a survival-sustaining role for IIS in a subset of gut cells in Drosophila melanogaster, namely the intestinal stem cells (ISCs) and progenitor cells. Using RNAi to knockdown the insulin receptor, we found that inhibition of IIS in ISCs statistically shortened the lifespan of experimental flies compared with non-knockdown controls, and also shortened their survival under starvation or malnutrition conditions. These flies also showed decreased reproduction and feeding, and had lower amounts of glycogen and glucose in the body. In addition, increased expression was observed for the Drosophila transcripts for the insulin-like peptides dilp2, dilp5, and dilp6. This may reflect increased insulin signaling in peripheral tissues supported by up-regulation of the target of the brain insulin gene (tobi). In contrast, activation of IIS (via knockdown of the insulin pathway inhibitor PTEN) in intestinal stem and progenitor cells decreased fly resistance to malnutrition, potentially by affecting adipokinetic hormone signaling. Finally, Pten knockdown to enhance IIS also activated JAK-STAT signaling in gut tissue by up-regulation of upd2, upd3, and soc36 genes, as well as genes encoding the EGF receptor ligands spitz and vein. These results clearly demonstrate that manipulating insulin levels may be used to modulate various fly traits, which are important determinants of organismal survival.


Assuntos
Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Insulina/metabolismo , Intestinos/citologia , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Comportamento Alimentar , Regulação da Expressão Gênica , Glucose/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade/genética , Especificidade de Órgãos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética , Análise de Sobrevida
5.
Biogerontology ; 21(2): 173-174, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31989363

RESUMO

The article Alternative NADH dehydrogenase extends lifespan and increases resistance to xenobiotics in Drosophila, written by Dmytro V. Gospodaryov. Olha M. Strilbytska. Uliana V. Semaniuk. Natalia V. Perkhulyn. Bohdana M. Rovenko. Ihor S. Yurkevych. Ana G. Barata. Tobias P. Dick. Oleh V. Lushchak and Howard T. Jacobs, was originally published electronically on the publisher's internet portal on 20 November 2019 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on 27 January 2020 to © The Author(s) 2020 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The original article has been corrected.

6.
Biogerontology ; 21(2): 155-171, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31749111

RESUMO

Mitochondrial alternative NADH dehydrogenase (aNDH) was found to extend lifespan when expressed in the fruit fly. We have found that fruit flies expressing aNDH from Ciona intestinalis (NDX) had 17-71% lifespan prolongation on media with different protein-tocarbohydrate ratios except NDX-expressing males that had 19% shorter lifespan than controls on a high protein diet. NDX-expressing flies were more resistant to organic xenobiotics, 2,4-dichlorophenoxyacetic acid and alloxan, and inorganic toxicant potassium iodate, and partially to sodium molybdate treatments. On the other hand, NDX-expressing flies were more sensitive to catechol and sodium chromate. Enzymatic analysis showed that NDX-expressing males had higher glucose 6-phosphate dehydrogenase activity, whilst both sexes showed increased glutathione S-transferase activity.


Assuntos
Ciona intestinalis/enzimologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Resistência a Medicamentos , Metabolismo Energético , Longevidade , NADH Desidrogenase/metabolismo , Xenobióticos/farmacologia , Animais , Animais Geneticamente Modificados , Ciona intestinalis/genética , Drosophila melanogaster/genética , Resistência a Medicamentos/genética , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica , Longevidade/genética , Masculino , NADH Desidrogenase/genética , Fatores Sexuais
7.
Artigo em Inglês | MEDLINE | ID: mdl-31765707

RESUMO

Non-genetic inheritance of metabolic state over multiple generations has been widely reported in insects. The present study uses the fruit fly, Drosophila melanogaster, to assess whether lifespan, physiological traits and metabolism are affected by the dietary protein-to-carbohydrate ratio (P:C) of the prior adult generation. Groups of parental flies were fed diets with different P:C ratios. Their progeny groups were raised on the same diet so the only variable in the experiments was the diet fed to the parents. Parental P:C affected the lifespan of female offspring, however had no impact on F1 males survival. Low parental P:C increased feeding rate in progeny. An increase in the P:C ratio from 0.03 to 0.65 decreased the levels of body glucose and trehalose in the offspring and a similar tendency was observed in the levels of circulating hemolymph glucose and trehalose. Offspring also accumulated less triglycerides but more glycogen when parents were fed a low P:C diet. Our study indicates that the parental dietary P:C ration has a strong impact on the lifespan, reproduction, appetite and metabolism in the offspring generation.


Assuntos
Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Drosophila melanogaster/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Drosophila melanogaster/metabolismo , Comportamento Alimentar , Feminino , Fertilidade , Longevidade , Masculino , Metaboloma
8.
Geroscience ; 42(1): 117-139, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31686375

RESUMO

Aging population presents a major challenge for many countries in the world and has made the development of efficient means for healthspan extension a priority task for researchers and clinicians worldwide. Anti-aging properties including antioxidant, anti-inflammatory, anti-tumor, and cardioprotective activities have been reported for various phytobioactive compounds (PBCs) including resveratrol, quercetin, curcumin, catechin, etc. However, the therapeutic potential of orally administered PBCs is limited by their poor stability, bioavailability, and solubility in the gastrointestinal tract. Recently, innovative nanotechnology-based approaches have been developed to improve the bioactivity of PBCs and enhance their potential in preventing and/or treating age-associated disorders, primarily those caused by aging-related chronic inflammation. PBC-loaded nanoparticles designed for oral administration provide many benefits over conventional formulations, including enhanced stability and solubility, prolonged half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent advances in this rapidly developing research area.


Assuntos
Nanopartículas , Disponibilidade Biológica , Nanotecnologia , Solubilidade
9.
J Gerontol A Biol Sci Med Sci ; 74(12): 1835-1843, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29945183

RESUMO

Aging is a multifactorial process which affects all animals. Aging as a result of damage accumulation is the most accepted explanation but the proximal causes remain to be elucidated. There is also evidence indicating that aging has an important genetic component. Animal species age at different rates and specific signaling pathways, such as insulin/insulin-like growth factor, can regulate life span of individuals within a species by reprogramming cells in response to environmental changes. Here, we use an unbiased approach to identify novel factors that regulate life span in Drosophila melanogaster. We compare the transcriptome and metabolome of two wild-type strains used widely in aging research: short-lived Dahomey and long-lived Oregon R flies. We found that Dahomey flies carry several traits associated with short-lived individuals and species such as increased lipoxidative stress, decreased mitochondrial gene expression, and increased Target of Rapamycin signaling. Dahomey flies also have upregulated octopamine signaling known to stimulate foraging behavior. Accordingly, we present evidence that increased foraging behavior, under laboratory conditions where nutrients are in excess increases damage generation and accelerates aging. In summary, we have identified several new pathways, which influence longevity highlighting the contribution and importance of the genetic component of aging.


Assuntos
Envelhecimento/genética , Envelhecimento/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Animais , Expressão Gênica , Longevidade/genética , Longevidade/fisiologia , Metaboloma/genética , Metaboloma/fisiologia , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Fenótipo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transcriptoma/genética , Transcriptoma/fisiologia
10.
Exp Gerontol ; 115: 69-78, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30502540

RESUMO

Every organism must adapt and respond appropriately to the source of nutrients available in its environment. Different mechanisms and pathways are involved in detecting the intracellular and extracellular levels of macronutrients including amino acids. Detection of amino acids in food sources is provided by taste cells expressing T1R1 and T1R3 type receptors. Additionally, cells of the intestine, pancreas or heart sense amino acids extracellularly. Neuronal and hormonal regulation integrates and coordinates the signals at the organismal level. Amino acid-sensitive mechanisms including GCN2 protein, mTOR and LYNUS machinery adjust cellular process according to the availability of specific amino acids. Triggering these mechanisms by genetic manipulations or by external manipulations with diets has a significant impact on lifespan. In model organisms, the restriction of protein or specific amino acids within the diet leads to lifespan-extending effects. However, the translation of results from model organisms to application in humans has to take into account lifestyle, psychology, social aspects and the possibility to choose what to eat and how it is cooked.


Assuntos
Envelhecimento/fisiologia , Aminoácidos/fisiologia , Proteínas Alimentares , Transdução de Sinais/fisiologia , Animais , Humanos , Nutrientes
11.
Front Physiol ; 9: 1083, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197596

RESUMO

Fruit flies have eight identified Drosophila insulin-like peptides (DILPs) that are involved in the regulation of carbohydrate concentrations in hemolymph as well as in accumulation of storage metabolites. In the present study, we investigated diet-dependent roles of DILPs encoded by the genes dilp1-5, and dilp7 in the regulation of insect appetite, food choice, accumulation of triglycerides, glycogen, glucose, and trehalose in fruit fly bodies and carbohydrates in hemolymph. We have found that the wild type and the mutant lines demonstrate compensatory feeding for carbohydrates. However, mutants on dilp2,3, dilp3, dilp5, and dilp7 showed higher consumption of proteins on high yeast diets. To evaluate metabolic differences between studied lines on different diets we applied response surface methodology. High nutrient diets led to a moderate increase in concentration of glucose in hemolymph of the wild type flies. Mutations on dilp genes changed this pattern. We have revealed that the dilp2 mutation led to a drop in glycogen levels independently on diet, lack of dilp3 led to dramatic increase in circulating trehalose and glycogen levels, especially at low protein consumption. Lack of dilp5 led to decreased levels of glycogen and triglycerides on all diets, whereas knockout on dilp7 caused increase in glycogen levels and simultaneous decrease in triglyceride levels at low protein consumption. Fruit fly appetite was influenced by dilp3 and dilp7 genes. Our data contribute to the understanding of Drosophila as a model for further studies of metabolic diseases and may serve as a guide for uncovering the evolution of metabolic regulatory pathways.

12.
Arch Insect Biochem Physiol ; 91(1): 52-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26446372

RESUMO

Aging is often associated with accumulation of oxidative damage in proteins and lipids. However, some studies do not support this view, raising the question of whether high levels of oxidative damage are associated with lifespan. In the current investigation, Drosophila melanogaster flies were kept on diets with 2 or 10% of either glucose or fructose. The lifespan, fecundity, and feeding as well as amounts of protein carbonyls (PC) and lipid peroxides (LOOH), activities of superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), and glutathione reductase activity of thioredoxin reductase (TrxR) were measured in "young" (10-day old) and "aged" (50-day old) flies. Flies maintained on diets with 10% carbohydrate lived longer than those on the 2% diets. However, neither lifespan nor fecundity was affected by the type of carbohydrate. The amount of PC was unaffected by diet and age, whereas flies fed on diets with 10% carbohydrate had about fivefold higher amounts of LOOH compared to flies maintained on the 2% carbohydrate diets. Catalase activity was significantly lower in flies fed on diets with 10% carbohydrates compared to flies on 2% carbohydrate diets. The activities of SOD, GST, and TrxR were not affected by the diet or age of the flies. The higher levels of LOOH in flies maintained on 10% carbohydrate did not reduce their lifespan, from which we infer that oxidative damage to only one class of biomolecules, particularly lipids, is not sufficient to influence lifespan.


Assuntos
Envelhecimento , Antioxidantes/metabolismo , Proteínas Alimentares/metabolismo , Drosophila melanogaster/fisiologia , Metabolismo dos Lipídeos , Animais , Drosophila melanogaster/enzimologia , Feminino , Longevidade , Masculino , Oxirredução
13.
J Insect Physiol ; 79: 42-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26050918

RESUMO

The effects of sucrose in varied concentrations (0.25-20%) with constant amount of yeasts in larval diet on development and metabolic parameters of adult fruit fly Drosophila melanogaster were studied. Larvae consumed more food at low sucrose diet, overeating with yeast. On high sucrose diet, larvae ingested more carbohydrates, despite consuming less food and obtaining less protein derived from yeast. High sucrose diet slowed down pupation and increased pupa mortality, enhanced levels of lipids and glycogen, increased dry body mass, decreased water content, i.e. resulted in obese phenotype. Furthermore, it suppressed reactive oxygen species-induced oxidation of lipids and proteins as well as the activity of superoxide dismutase. The activity of catalase was gender-related. In males, at all sucrose concentrations used catalase activity was higher than at its concentration of 0.25%, whereas in females sucrose concentration virtually did not influence the activity. High sucrose diet increased content of protein thiols and the activity of glucose-6-phosphate dehydrogenase. The increase in sucrose concentration also enhanced uric acid level in females, but caused opposite effects in males. Development on high sucrose diets was accompanied by elevated steady-state insulin-like peptide 3 mRNA level. Finally, carbohydrate starvation at yeast overfeeding on low sucrose diets resulted in oxidative stress reflected by higher levels of oxidized lipids and proteins accompanied by increased superoxide dismutase activity. Potential mechanisms involved in regulation of redox processes by carbohydrates are discussed.


Assuntos
Drosophila melanogaster/metabolismo , Estresse Oxidativo , Sacarose/metabolismo , Animais , Catalase , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Oxirredução , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Superóxido Dismutase/metabolismo , Leveduras
14.
Artigo em Inglês | MEDLINE | ID: mdl-25941153

RESUMO

Our recent study showed different effects of glucose and fructose overconsumption on the development of obese phenotypes in Drosophila. Glucose induced glucose toxicity due to the increase in circulating glucose, whereas fructose was more prone to induce obesity promoting accumulation of reserve lipids and carbohydrates (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Searching for mechanisms responsible for these phenotypes in this study, we analyzed mitochondrial activity, mitochondrial density, mtROS production, oxidative stress markers and antioxidant defense in fruit flies fed 0.25%, 4% and 10% glucose or fructose. It is shown that there is a complex interaction between dietary monosaccharide concentrations, mitochondrial activity and oxidative modifications to proteins and lipids. Glucose at high concentration (10%) reduced mitochondrial protein density and consequently respiration in flies, while fructose did not affect these parameters. The production of ROS by mitochondria did not reflect activities of mitochondrial complexes. Moreover, there was no clear connection between mtROS production and antioxidant defense or between antioxidant defense and developmental survival, shown in our previous study (Rovenko et al., Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 180, 75-85). Instead, mtROS and antioxidant machinery cooperated to maintain a redox state that determined survival rates, and paradoxically, pro-oxidant conditions facilitated larva survival independently of the type of carbohydrate. It seems that in this complex system glucose controls the amount of oxidative modification regulating mitochondrial activity, while fructose regulates steady-state mRNA levels of antioxidant enzymes.


Assuntos
Drosophila melanogaster/metabolismo , Frutose/administração & dosagem , Glucose/administração & dosagem , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Feminino , Masculino
15.
J Gerontol A Biol Sci Med Sci ; 69(1): 3-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23723431

RESUMO

The fruit fly, Drosophila melanogaster is a broadly used model for gerontological research. Many studies are dedicated to understanding nutritional effects on ageing; however, the influence of dietary carbohydrate type and dosage is still poorly understood. We show that among three carbohydrates tested, fructose, glucose, and sucrose, the latter decreased life span by 13%-27%, being present in concentrations of 2%-20% in the diet. Life-span shortening by sucrose was accompanied by an increase in age-independent mortality. Sucrose also dramatically decreased the fecundity of the flies. The differences in life span and fecundity were determined to be unrelated to differential carbohydrate ingestion. The highest mitochondrial protein density was observed in flies fed sucrose-containing diet. However, this parameter was not affected by carbohydrate amount in the diet. Fly sensitivity to oxidative stress, induced by menadione, was increased in aged flies and was slightly affected by type and concentration of carbohydrate. In general, it has been demonstrated that sucrose, commonly used in recipes of Drosophila laboratory food, may shorten life span and lower egg-laying capability on the diets with very low protein content.


Assuntos
Envelhecimento/fisiologia , Carboidratos da Dieta/administração & dosagem , Drosophila melanogaster/fisiologia , Longevidade/fisiologia , Animais , Feminino , Fertilidade/fisiologia , Masculino , Estresse Oxidativo/efeitos dos fármacos
17.
Longev Healthspan ; 2(1): 5, 2013 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-24472572

RESUMO

BACKGROUND: This study was conducted to evaluate the effects of rhizome powder from the herb Rhodiola rosea, a traditional Western Ukraine medicinal adaptogen, on lifespan and age-related physiological functions of the fruit fly Drosophila melanogaster. RESULTS: Flies fed food supplemented with 5.0 mg/ml and 10.0 mg/ml of R. rosea rhizome powder had a 14% to 17% higher median lifespan, whereas at 30.0 mg/ml lifespan was decreased by 9% to 12%. The preparation did not decrease fly fecundity.The effect of R. rosea supplement on lifespan was dependent on diet composition. Lifespan extension by 15% to 21% was observed only for diets with protein-to-carbohydrate ratios less than 1. Lifespan extension was also dependent on total concentration of macronutrients. Thus, for the diet with 15% yeast and 15% sucrose there was no lifespan extension, while for the diet with protein-to-carbohydrate ratio 20:1 R. rosea decreased lifespan by about 10%.Flies fed Rhodiola preparation were physically more active, less sensitive to the redox-cycling compound menadione and had a longer time of heat coma onset compared with controls. Positive effects of Rhodiola rhizome on stress resistance and locomotor activity were highest at the 'middle age'. CONCLUSIONS: The present data show that long-term food supplementation with R. rosea rhizome not only increases D. melanogaster lifespan, but also delays age-related decline of physical activity and increases stress resistance, what depends on protein-to-carbohydrate ratio of the diet.

18.
J Gerontol A Biol Sci Med Sci ; 67(2): 118-25, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22042724

RESUMO

It has recently been demonstrated that as the ratio of protein to carbohydrate (P:C) in the diet declines, life span increases in Drosophila. Here we explored how extremely low dietary ratios of protein to carbohydrate affected longevity and a selection of variables associated with functional senescence. An increase in P:C ratio from 1:57 to 1:20 shortened life span by increasing age-dependent mortality; whereas a further decline in P:C from 1:57 to 1:95 caused a modest decrease in life span. Female flies consuming the 1:20 and 1:38 diets laid more eggs than those consuming the lower P:C diets. Flies fed diets with higher ratios were more resistant to heat stress. Flies consuming the diets with lowest P:C ratios needed more time to restore activity after paralysis. Our study has therefore extended to very low P:C ratios available data demonstrating that dietary P:C ratio affects life span, fecundity and heat stress resistance, with fecundity and heat stress responses showing the opposite trend to life span.


Assuntos
Envelhecimento , Carboidratos/farmacologia , Drosophila melanogaster/crescimento & desenvolvimento , Estágios do Ciclo de Vida/fisiologia , Longevidade/efeitos dos fármacos , Proteínas/farmacologia , Animais , Feminino , Fertilidade/fisiologia , Longevidade/fisiologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...