Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 111: 110791, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279742

RESUMO

Bacterial biofilm is an obstacle for wound healing because it can affect the epithelialization, development of granular cells, and other regular inflammatory procedures. It plays the role of safeguarding pathogens from antiseptics and antibiotics. In this respect, this research work aims to develop heteroatom (N, F, P/B) incorporated multi-walled carbon nanotubes (MWCNT), such as NFP-MWCNT and NFB-MWCNT, which can maximize the wound healing efficacy via destroying the wound pathogen and biofilms. NFP-MWCNT and NFB-MWCNT were obtained using self-assembling ionic liquids (ILs) such as BMIM-PF6 and BMIM-BF4 in an acid-functionalized MWCNT (A-MWCNT) suspension, followed by pyrolysis in a nitrogen atmosphere. The composite formation was established by FTIR, XRD, RAMAN, EDX mapping, and XPS spectroscopy. TEM and SEM analyses confirmed the bamboo stick-like morphology. During this reaction, IL molecules might be cross-linked with A-MWCNT via hydrogen bonding and ionic interaction, with further pyrolysis producing the defects with doping of N, F, P, or B elements. Finally, they were assessed for their antibiofilm activity against typical bacterial strains such as K. pneumoniae, P. aeruginosa, E. coli (Gram-negative), and B. subtilis (Gram-positive), using a quantitative estimation approach. The results revealed greater effectiveness of NFB-MWCNT and NFP-MWCNT, compared to pristine MWCNT. The antibiofilm activity of NFP-MWCNT and NFB-MWCNT was associated with their specific surface chemistry (due to the presence of N, F, P/B heteroatoms), and their nanosize. Moreover, the synthesized material was examined for its wound-healing ability in Wistar rats. The results proved that cells cultured on NFB-MWCNT and NFP-MWCNT displayed exceptional healing ability. The different electronegativity between the heteroatoms creates the surface charge that inhibits the biofilm formation, leading to healing the wounds together with the heteroatom mineral source for mouse fibroblast regeneration and granulation. This is the first study in which the role of different heteroatoms incorporated into MWCNT is examined in the context of antibiofilm-associated wound-healing ability.


Assuntos
Biofilmes , Imidazóis/farmacologia , Líquidos Iônicos/farmacologia , Nanocompostos/química , Nanotubos de Carbono/química , Cicatrização , Animais , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Masculino , Testes de Sensibilidade Microbiana , Nanocompostos/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Espectroscopia Fotoeletrônica , Ratos Wistar , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Cicatrização/efeitos dos fármacos , Difração de Raios X
2.
Mini Rev Med Chem ; 13(10): 1501-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22697516

RESUMO

The development of effective and versatile delivery systems for the controllable and/or targeted delivery of drugs, genes and proteins has a huge potential to improve the disease outcomes. Many drug carriers have been described for different applications in this field. As one of the most reliable alternatives, calcium phosphate (CaP) nanoparticles have been paid so many attentions due to their high bioactivity, biocompatibility, chemical stability and strong adsorption ability under physiological conditions. Some of these properties can in principle be tailored through surface modification, structural design to achieve a sustained, controlled, pulsed or targeted release of drug. In the present article, researches performed in CaP nanoparticles are reviewed based on the recent references.


Assuntos
Fosfatos de Cálcio/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Adsorção , Materiais Biocompatíveis/química , Humanos , Propriedades de Superfície
3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-238295

RESUMO

SG600, SG900 and SG1100 were synthesized by the sol-gel method. Further treatments with increasing temperatures influenced and determined the crystallization degree of the material. Primary cultured osteoclasts were incubated for 4h and 48h on samples. Osteoclast actin labeling was examined by cytochemical staining. The concentrations of Ca and P in culture medium were quantified by colorimetric methods. SEM examined osteoclast morphology and resorption lacuna. Actin staining revealed on all three materials the typical adhesion contact ring. The Ca concentration in the culture medium of SG600 was significantly higher than that in control medium, SG900 and SG1100. Ca and P concentrations were always higher in culture media with the presence of osteoclasts. Morphological studies by scanning electron microsopy(SEM) showed a good adhesion behavior of osteoclasts on all three samples. Well-developed and deep resorption lacunae appearing after the osteoclastic resorption action were detected on all three samples. The synthetic bioglasses with different crystallizations caused different solubility, which seemed to have little effect on the osteoclast resorption behavior. The results of morphological studies on osteoclasts and resorption lacunae clearly demonstrate that the synthetic bioglasses are easily resorbed in vitro by osteoclasts.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis , Biodegradação Ambiental , Substitutos Ósseos , Células Cultivadas , Cerâmica , Cristalização , Osteoclastos , Biologia Celular , Metabolismo , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...