Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Hazard Mater ; 403: 123842, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264923

RESUMO

With the number of easily accessible ores depleting, alternate primary and secondary sources are required to meet the increasing demand of economically important metals. Whilst highly abundant, these materials are of lower grade with respect to traditional ores, thus highly selective and sustainable metal extraction technologies are needed to reduce processing costs. Here, we investigated the metal leaching potential of biogenic ammonia produced by a ureolytic strain of Lysinibacillus sphaericus on eight primary and secondary materials, comprised of mining and metallurgical residues, sludges and automotive shredder residues (ASR). For the majority of materials, moderate to high yields (30-70%) and very high selectivity (>97% against iron) of copper and zinc were obtained with 1 mol L-1 total ammonia. Optimal leaching was achieved and further refined for the ASR in a two-step indirect leaching system with biogenic ammonia. Copper leaching was the result of local corrosion and differences in leaching against the synthetic (NH4)2CO3 control could be accounted for by pH shifts from microbial metabolism, subsequently altering free NH3 required for coordination. These results provide important findings for future sustainable metal recovery technologies from secondary materials.


Assuntos
Cobre , Zinco , Amônia , Bacillaceae , Minerais
2.
Sci Total Environ ; 721: 137753, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32171143

RESUMO

The first objective of this experimental study is the assessment of the alkali activation potential of two types of fayalitic slags, an as-received one (FS) and the one obtained after plasma treatment (FSP) of the initial FS, for the production of alkali activated materials (AAMs). Furthermore, the second objective is the elucidation of the co-valorization potential of FS and FSP slags when mixed with ferronickel (FeNi) slag (LS). The alkaline activating solution used was a mixture of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3). The effect of various operating parameters, such as H2O/Na2O and SiO2/Na2O ratios present in the activating solution, curing temperature, curing period and ageing period on the compressive strength, density, water adsorption, porosity and toxicity of the produced AAMs was explored. The structural integrity of selected AAMs was investigated after firing specimens for 6 h at temperature up to 500 °C, immersion in distilled water and acidic solution or subjection to freeze-thaw cycles for a period of 7 or 30 days. The results of this study show that FS- and FSP-based AAMs acquire compressive strength of 44.8 MPa and 27.2 MPa, respectively. When FS and FSP were mixed with LS at 50:50%wt ratios the compressive strength of the produced specimens increased to 64.3 MPa and 45.8 MPa, respectively. Furthermore, selected AAMs produced after co-valorisation of slags retained sufficient compressive strength after firing at 500 °C, 45-68 MPa, and exhibited very low toxicity. These findings prove the alkali activation potential of fayalitic slags as well as their co-valorization with ferronickel slag for the production of AAMs, an approach which is in line with the principles of zero-waste and circular economy.

3.
RSC Adv ; 9(3): 1378-1386, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35518045

RESUMO

An integrated process flow sheet for the recovery of yttrium and europium from waste cathode-ray tube (CRT) phosphors was developed. This flow sheet is based on a sequence of roasting, leaching with organic acids and precipitation steps. Zinc was efficiently removed from the roasted CRT phosphors by leaching with acetic acid, giving access to the rare earth content. Yttrium and europium were quantitatively leached from the residue by a 1 mol L-1 methanesulphonic acid (MSA) solution. Precipitation with oxalic acid gave a mixed Y/Eu oxalate of high purity (>99 wt%). Co-precipitation of zinc was less than 2 wt%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...