Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 85: 105988, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344863

RESUMO

Ultrasound induced cavitation (acoustic cavitation) process is found useful in various applications. Scientists from various disciplines have been exploring the fundamental aspects of acoustic cavitation processes over several decades. It is well documented that extreme localised temperature and pressure conditions are generated when a cavitation bubble collapses. Several experimental techniques have also been developed to estimate cavitation bubble temperatures. Depending upon specific experimental conditions, light emission from cavitation bubbles is observed, referred to as sonoluminescence. Sonoluminescence studies have been used to develop a fundamental understanding of cavitation processes in single and multibubble systems. This minireview aims to provide some highlights on the development of basic understandings of acoustic cavitation processes using cavitation bubble temperature, sonoluminescence and interfacial chemistry over the past 2-3 decades.


Assuntos
Acústica , Temperatura
2.
Ultrason Sonochem ; 78: 105751, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34534797

RESUMO

Methods of NMR relaxation and differential scanning calorimetry (DSC) were used to study the crystallization of anhydrous milk fat (AMF) obtained from milk and subjected to ultrasonic (US) processing. Amongst the changes in the crystallization nature under the influence of ultrasound are the decrease in the crystallization temperature and the increase in the melting enthalpy of the anhydrous milk fat samples. The increase is ∼30% at 20 min of isothermal crystallization and is presumably explained by the additional formation of ß'-form crystals from the melt. The parameters of the Avrami equation applied to the description of experimental data show an increase in the crystallization rate in samples with ultrasonic treatment and a change in the dimension of crystallization with a change in melting temperature.


Assuntos
Leite , Ultrassom , Animais , Varredura Diferencial de Calorimetria , Cristalização , Cabras
3.
Ultrason Sonochem ; 77: 105673, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311321

RESUMO

The effect of ultrasound treatment on molecular mobility and organization of the main components in raw goat milk was studied by EPR and NMR spectroscopies. NMR relaxation studies showed an increase in the spin-lattice T1 and spin-spin T2 relaxation times in goat milk products (cream, anhydrous fat) and change in the diffusion of proton-containing molecules during ultrasound treatment. The diffusion became more uniform and could be rather accurately approximated by one effective diffusion coefficient Deff, which indicates homogenization of goat milk components, dispersion of globular and supermicellar formations under sonication. EPR studies have shown that molecular mobility and organization of hydrophobic regions in goat milk are similar to those observed in micellar formations of surfactants with a hydrocarbon chain length C12-C16. Ultrasound treatment did not affect submicellar and protein globule organization. Free radicals arising under ultrasound impact of milk reacted quickly with components of goat milk (triglycerides, proteins, fatty acids) and were not observed by spin trapping method.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Cabras , Espectroscopia de Ressonância Magnética , Leite/química , Ondas Ultrassônicas , Animais , Interações Hidrofóbicas e Hidrofílicas
4.
J Oleo Sci ; 62(5): 257-69, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23648400

RESUMO

A semi empirical kinetic (SEK) method has been used to determine the ratio of cetyltrimethylammonium bromide (CTABr) micellar binding constants of counterion X⁻ and Br⁻ (a reference counterion), i.e. K(X)/K(Br) (=R(X)(Br)). The values of K(X) and K(Br) have been derived from the kinetic parameters obtained in the presence spherical/non-spherical and spherical micelles, respectively. This rather new method gives the respective mean values of R(X)(Br) as 45±2, 25±3, 4.7±0.6 and 119±10 for X=2,4-, 2,5-, 2,6- and 3,4-Cl2C6H3CO2⁻ (Cl2Bz'Na). Literature lacks the report on the values of R(X)(Br) for all X except for X=2,6-Cl2C6H3CO2⁻ (2,6-Cl2Bz'⁻) for which the reported value is 5.0. Rheological properties, such as shear thinning behavior, reveal indirectly the presence of wormlike micelles (WM) in the CTABr micellar solutions containing MX for all X except X=2,6-Cl2Bz'⁻. The micelles remain spherical within [2,6-Cl2Bz'⁻] range 0.01-0.34 M at 0.015 M CTABr. The maxima of the plots of zero shear viscosity, η0, (obtained from the initial plateau region of flow curves, i.e. η vs. γ curve) vs. [MX] (MX=2,4-, 2,5- and 3,4-Cl2Bz'Na) at 0.015 M CTABr also support indirectly the presence of linear, entangled and branched WM.


Assuntos
Compostos de Cetrimônio/química , Clorobenzoatos/química , Micelas , Cetrimônio
5.
Adv Colloid Interface Sci ; 193-194: 12-23, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23582713

RESUMO

The fascinating and serendipitous discovery, in 1976, of the characteristic viscoelastic behavior of wormlike micelles of cetyltrimethylammonium salicylate (CTASa) surfactant solution at ~2×10(-4) M CTASa became a catalyst for an increasing interest in both industrial application and mechanism of the origin of micellar growth of this and related wormlike micellar systems. It has been perceived for more than three decades, based upon qualitative evidence, that the extent of the strength of the counterion (X) binding to ionic micelles determines the counterion-induced micellar structural transition from spherical-to-small rodlike-to-linear long stiff/flexible rodlike/wormlike-to-entangled wormlike micelles. This perception predicts the presence of a possible quantitative correlation of counterionic micellar binding constants (KX) with counterion-induced micellar growth. The quantitative estimation of counterion binding affinity to cationic micelles, in terms of the values of the degree of counterion binding (ßX), is concluded to be either inefficient or unreliable for moderately hydrophobic counterions (such as substituted benzoate ions). The values of KX, measured in terms of conventional ion exchange constants (KX(Y)), can provide a quantitative correlation between KX or KX(Y) (with a reference counterion Y=Cl(-) or Br(-)) and counterion-induced ionic micellar growth. A recent new semi-empirical kinetic (SEK) method provides the estimation of KX(Y) for Y=Br as well as ratio of counterionic micellar binding constants KX/KBr (= RX(Br)) where the values of KBr and KX have been derived from the kinetic parameters in the presence of cationic spherical and nonspherical micelles, respectively. The SEK method has been used to determine the values of KX(Br) or RX(Br) for X=2-, 3- and 4-ClC6H4CO2(-). Rheometric measurements on aqueous CTABr/MX (MX=2-,3- and 4-ClBzNa) solutions containing 0.015 M CTABr and varying values of [MX] reveal the presence of spherical micelles for MX=2-ClBzNa and long linear as well as entangled wormlike micelles for MX=3- and 4-ClBzNa. The respective values of KX(Br) or RX(Br) of 5.7, 50 and 48 for X=2-, 3- and 4-ClBz(-) give a quantitative correlation with the rheometric measurements of the structural features of micelles of 0.015 M CTABr solutions containing 2-, 3- and 4 ClBzNa.

6.
J Phys Chem B ; 116(7): 2065-74, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22272582

RESUMO

The semiempirical kinetic method has been used to determine the ratio of cetyltrimethylammonium bromide, CTABr, micellar binding constants of counterions X (K(X)) and Br (K(Br)), i.e., K(X)/K(Br) (= R(X)(Br)) for X = dianionic 5-methyl- and 5-methoxysalicylate ions. The values of K(X) and K(Br) have been derived from the kinetic parameters obtained in the presence of spherical/nonspherical and spherical micelles, respectively. The values of R(X)(Br) remain essentially independent of [CTABr] within its range 0.005-0.015 M for both dianionic 5-methyl- and 5-methoxysalicylate ions. The increase in temperature from 35 to 55 °C decreases the values of R(X)(Br) from 796 to 53 for 5-methylsalicylate ions and from 89 to 7.0 for 5-methoxysalicylate ions. Rheological properties of 0.015 M CTABr solutions containing ≥0.01 M counterionic salt, M(2)X, show indirectly the presence of unilamellar vesicles, ULV, and long linear, entangled, and branched wormlike micelles, WM, at, respectively, 35 and 55 °C for X = dianionic 5-methylsalicylate ion. However, such studies show WM and probable spherical micelles, SM, at, respectively, 35 and 55 °C for X = dianionic 5-methoxysalicylate ions. It has been shown that, at a constant [CTABr], the micellar structural transitions from SM-to-WM-to-vesicles may be correlated quantitatively with the values of R(X)(Br) regardless of whether such micellar structural transitions occur due to variation in the values of [M(2)X] at a constant temperature or due to variation in temperature at a constant [M(2)X].

7.
J Colloid Interface Sci ; 360(1): 182-8, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21549387

RESUMO

Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of N-(2'-methoxyphenyl)phthalimide (1) decrease nonlinearly with increasing total concentration of nonionic surfactant C(m)E(n) (i.e. [C(m)E(n)](T) where m and n represent the respective number of methyl/methylene units in the tail and polyoxyethylene units in the headgroup of a surfactant molecule and m/n=16/20, 12/23 and 18/20) at constant 2% v/v CH(3)CN and 1.0 mM NaOH. The k(obs)vs. [C(m)E(n)](T) data follow the pseudophase micellar (PM) model at ≤ 50 mM C(16)E(20), ≤ 1.4 mM C(12)E(23) and ≤ 2.0 mM C(18)E(20) where rate of hydrolysis of 1 in micellar pseudophase could not be detected. The values of k(obs) fail to follow the PM model at > ∼50 mM C(16)E(20), > ∼1.4 mM C(12)E(23) and > ∼2.0 mM C(18)E(20) which has been attributed to a micellar structural transition from spherical to rodlike which in turn increases C(m)E(n) micellar binding constant (K(S)) of 1 with increasing values of [C(m)E(n)](T). Rheological measurements show the presence of spherical micelles at ≤ 50 mM C(16)E(20), ≤ 1.4 mM C(12)E(23) and ≤ 3.0 mM C(18)E(20). The presence of rodlike micelles is evident from rheological measurements at > ∼50 mM C(16)E(20), > ∼1.4 mM C(12)E(23) and > ∼3.0 mM C(18)E(20).

8.
J Colloid Interface Sci ; 357(1): 121-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21333302

RESUMO

The effects of the concentration of inert organic salts, [MX], (MX=2-, 3- and 4-BrBzNa with BrBzNa=BrC(6)H(4)CO(2)Na) on the rate of piperidinolysis of ionized phenyl salicylate (PS(-)) have been rationalized in terms of pseudophase micellar (PM) coupled with an empirical equation. The appearance of induction concentration in the plots of k(obs) versus [MX] (where k(obs) is pseudo-first-order rate constants for the reaction of piperidine (Pip) with PS(-)) is attributed to the occurrence of two or more than two independent ion exchange processes between different counterions at the cationic micellar surface. The derived kinetic equation, in terms of PM model coupled with an empirical equation, gives empirical parameters F(X/S) and K(X/S) whose magnitudes lead to the calculation of usual ion exchange constant K(X)(Br) (=K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X(-) and Br(-), respectively). The value of F(X/S) measures the fraction of S(-) (=PS(-)) ions transferred from the cationic micellar pseudophase to the aqueous phase by the optimum value of [MX] due to ion exchange X(-)/S(-). Similarly, the value of K(X/S) measures the ability of X(-) ions to expel S(-) ions from cationic micellar pseudophase to aqueous phase through ion exchange X(-)/S(-). This rather new technique gives the respective values of K(X)(Br) as 8.8±0.3, 71±6 and 62±5 for X(-)=2-, 3- and 4-BrBz(-). Rheological measurements reveal the shear thinning behavior of all the surfactant solutions at 15mM CTABr (cetyltrimethylammonium bromide) indicating indirectly the presence of rodlike micelles. The plots of shear viscosity (η) at a constant shear rate (γ), i.e. η(γ), versus [MX] at 15 mM CTABr exhibit maxima for MX=3-BrBzNa and 4-BrBzNa while for MX=2-BrBzNa, the viscosity maximum appears to be missing. Such viscosity maxima are generally formed in surfactant solutions containing long stiff and flexible rodlike micelles with entangled and branched/multiconnected networks. Thus, 15 mM CTABr solutions at different [MX] contain long stiff and flexible rodlike micelles for MX=3- and 4-BrBzNa and short rodlike micelles for MX=2-BrBzNa.

9.
Langmuir ; 26(13): 10627-35, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20524703

RESUMO

Pseudo-first-order rate constants (k(obs)) for the nucleophilic substitution reaction of piperidine (Pip) with ionized phenyl salicylate (PS(-)), obtained at a constant [Pip](T) (= 0.1 M), [PS(-)](T) (= 2 x 10(-4) M), [CTABr](T) (cetyltrimethylammonium bromide), < or = 0.06 M NaOH, and a varying concentration of MX (= 3-FC(6)H(4)CO(2)Na, 3-FBzNa and 4-FC(6)H(4)CO(2)Na, 4-FBzNa), follow the kinetic relationship k(obs) = (k(0) + thetaK(X/S)[MX])/(1 + K(X/S)[MX]) which is derived by the use of the pseudophase micellar (PM) model coupled with an empirical equation. The empirical equation explains the effects of [MX] on CTABr micellar binding constant (K(S)) of PS(-) that occur through X(-)/PS(-) ion exchange. Empirical constants theta and K(X/S) give the parameters F(X/S) and K(X/S), respectively. The magnitude of F(X/S) gives the measure of the fraction of micellized PS(-) transferred to the aqueous phase by the limiting concentration of X(-) through X(-)/PS(-) ion exchange. The values of F(X/S) and K(X/S) have been used to determine the usual thermodynamic ion exchange constant (K(X)(Y)) for ion exchange process X(-)/Y(-) on the CTABr micellar surface. The values of K(X)(Br) (where Br = Y) have been calculated for X = 3-FBzNa and 4-FBzNa. The mean values of K(X)(Br) are 12.8 +/- 0.9 and 13.4 +/- 0.6 for X(-) = 3-FBz(-) and 4-FBz(-), respectively. Nearly 3-fold-larger values of K(X)(Br) for X = 3-FBz(-) and 4-FBz(-) than those for X = Bz(-), 2-ClBz(-), 2-CH(3)Bz(-), and the 2,6-dichlorobenzoate ion (2,6-Cl(2)Bz(-)) are attributed to the presence of wormlike micelles in the presence of > 50 mM 3-FBz(-) and 4-FBz(-) in the [CTABr](T) range of 5-15 mM. Rheological properties such as shear thinning behavior of plots of shear viscosity versus the shear rate at a constant [3-FBz(-)] or [4-FBz(-)] as well as shear viscosity (at a constant shear rate) maxima as a function of the concentrations of 3-FBz(-) and 4-FBz(-) support the conclusion, derived from the values of K(X)(Br), for the probable presence of wormlike/viscoelastic micellar solutions under the conditions of the present study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...