Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 9408, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523079

RESUMO

This work has demonstrated the potential of a reduced graphene oxide silver/polyvinyl alcohol (rGO-Ag/PVA) film as a saturable absorber (SA) in ytterbium and erbium based Q-switched optical fiber lasers. The facile hydrothermal method was used to synthesize the nanocomposite between rGO and Ag nanoparticles. This was followed by a simple solution method to form the rGO-Ag film using PVA as the host polymer. From nonlinear absorption characterization, the rGO-Ag/PVA SA was determined to have a modulation depth of 30%, a nonsaturable loss of 70%, and a saturable intensity of 0.63 kW/cm2. Stable self-starting Q-switched pulses were obtained at the threshold pump power of 72.76 mW and 18.63 mW in the ytterbium-doped (YDFL) and erbium-doped fiber laser (EDFL) cavities respectively. The center operating wavelengths were observed at 1044.4 nm and 1560 nm for the two cavities. The shortest pulse width and maximum repetition rate of the YDFL and EDFL were 1.10 µs and 62.10 kHz and 1.38 µs and 76.63 kHz respectively. This work has demonstrated that the rGO-Ag/PVA film is suitable as an SA for pulse generation in the 1.0 and 1.5 µm regions and would have many potential photonics applications.

2.
Sci Rep ; 10(1): 9860, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555280

RESUMO

A wide-band and tunable Q-switched erbium-doped fiber (EDF) laser operating at 1560.5 nm with a tungsten ditelluride (WTe2) saturable absorber (SA) is demonstrated. The semi-metallic nature of WTe2 as well as its small band gap and excellent nonlinear optical properties make it an excellent SA material. The laser cavity uses an 89.5 cm long EDF, pumped by a 980 nm laser diode as the linear gain while the WTe2 based SA generates the pulsed output. The WTe2 based SA has a modulation depth, non-saturable loss and saturation intensity of about 21.4%, 78.6%, and 0.35 kW/cm2 respectively. Stable pulses with a maximum repetition rate of 55.56 kHz, narrowest pulse width of 1.77 µs and highest pulse energy of 18.09 nJ are obtained at the maximum pump power of 244.5 mW. A 56 nm tuning range is obtained in the laser cavity, and the output is observed having a signal to noise ratio (SNR) of 48.5 dB. The demonstrated laser has potential for use in a large number of photonics applications.

3.
J Nanosci Nanotechnol ; 19(11): 7054-7063, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039858

RESUMO

Silver-reduced graphene oxide (Ag-rGO) nanohybrid was synthesized by applying a slight modification to the Turkevich method using trisodium citrate as a reducing and stabilizing agent to catalyze the non-enzymatic electrochemical detection of hydrogen peroxide (H2O2). Spherical silver nanoparticles (AgNPs) with an average particle size of 2.2 nm surfaced on reduced graphene oxide (rGO) sheets. Cyclic voltammograms (CV) obtained from glassy carbon (GC) electrode coated with Ag-rGO nanohybrid (4 mM) exhibited a peak at an overpotential of -0.52 V, with a larger faradaic current for the reduction of H2O2. Using the modified electrode for the linear sweep voltammetry (LSV) detection of H2O2, the detection limit and sensitivity were determined to be 4.8 µM (S/N ═ 3) and 0.0262 µA µM-1, respectively. The sensor appeared selective and stable towards H2O2 in the presence of possible interference, and it also demonstrated good recoveries of H2O2 concentration in real water samples.

4.
Mikrochim Acta ; 185(4): 246, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29616348

RESUMO

An amperometric sensor for L-Cys is described which consists of a glassy carbon electrode (GCE) that was modified with reduced graphene oxide placed in a Nafion film and decorated with palladium nanoparticles (PdNPs). The film was synthesized by a hydrothermal method. The PdNPs have an average diameter of about 10 nm and a spherical shape. The modified GCE gives a linear electro-oxidative response to L-Cys (typically at +0.6 V vs. SCE) within the 0.5 to 10 µM concentration range. Other figures of merit include a response time of less than 2 s, a 0.15 µM lower detection limit (at signal to noise ratio of 3), and an analytical sensitivity of 1.30 µA·µM-1·cm-2. The sensor displays selectivity over ascorbic acid, uric acid, dopamine, hydrogen peroxide, urea, and glucose. The modified GCE was applied to the determination of L-Cys in human urine samples and gave excellent recoveries. Graphical abstract Spherical palladium nanoparticles (PdNPs) on reduced graphene oxide-Nafion (rGO-Nf) films were synthesized using a hydrothermal method. This nanohybrid was used for modifying a glassy carbon electrode to develop a sensor electrode for detecting L-cysteine that has fast response (less than 2 s), low detection limit (0.15 µM), and good sensitivity (0.092 µA µM-1 cm-2).


Assuntos
Cisteína/urina , Polímeros de Fluorcarboneto/química , Grafite/química , Nanopartículas Metálicas/química , Paládio/química , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Óxidos/química
5.
RSC Adv ; 8(45): 25592-25601, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35539777

RESUMO

Nickel oxide (NiO) nanoparticles successfully prepared from a nickel(ii) chloride hexahydrate precursor are used to form a chitosan capped NiO nanoparticle thin film to serve as a saturable absorber (SA) for the generation of passively Q-switched pulses in an erbium doped fiber laser (EDFL). The NiO/chitosan SA based EDFL is able to generate stable pulsed outputs at a low threshold pump power of 104.90 mW with a central wavelength at 1562 nm. The highest pulse energy obtainable by the system is 15.30 nJ at a repetition rate of 42.66 kHz and a pulse duration of 2.02 µs. The laser has a spectral range of 58 nm from 1522 to 1580 nm, covering the C and L bands and even portions of the S band. This study experimentally demonstrates that the potential of the NiO/chitosan film as an SA material for Q-switching operations, combined with the biocompatibility, non-toxicity and high thermal resistance of Chitosan, holds great prospects for a broad range of applications.

6.
Biosens Bioelectron ; 87: 1020-1028, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27697744

RESUMO

A sensitive and novel electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2) using a reduced graphene oxide-nafion@silver6 (rGO-Nf@Ag6) nanohybrid modified glassy carbon electrode (GC/rGO-Nf@Ag6). The GC/rGO-Nf@Ag6 electrode exhibited an excellent electrochemical sensing ability for determining H2O2 with high sensitivity and selectivity. The detection limit of the electrochemical sensor using the GC/rGO-Nf@Ag6 electrode for H2O2 determination was calculated to be 5.35×10-7M with sensitivity of 0.4508µAµM-1. The coupling between rGO-Nf with silver nanoparticles (AgNPs) significantly boosted the electroanalytical performance by providing more active area for analyte interaction, thereby allowing more rapid interfacial electron transfer process. The interfering effect on the current response of H2O2 was studied and the results revealed that the sensor electrode exhibited an excellent immunity from most common interferents. The proposed non-enzymatic electrochemical sensor was used for determining H2O2 in apple juice, and the sensor electrode provided satisfactory results with reliable recovery values. These studies revealed that the novel GC/rGO-Nf@Ag6 sensor electrode could be a potential candidate for the detection of H2O2.


Assuntos
Técnicas Eletroquímicas/métodos , Polímeros de Fluorcarboneto/química , Sucos de Frutas e Vegetais/análise , Grafite/química , Peróxido de Hidrogênio/análise , Nanopartículas Metálicas/química , Prata/química , Limite de Detecção , Nanopartículas Metálicas/ultraestrutura , Oxirredução , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...