Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(10): 6922-6937, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185020

RESUMO

Synergistic drug combinations can extend the use of poly(ADP-ribose) polymerase inhibitors (PARPi) such as Olaparib to BRCA-proficient tumors and overcome acquired or de novo drug resistance. To identify new synergistic combinations for PARPi, we screened a "micro-library" comprising a mix of commercially available drugs and DNA-binding ruthenium(II) polypyridyl complexes (RPCs) for Olaparib synergy in BRCA-proficient triple-negative breast cancer cells. This identified three hits: the natural product Curcumin and two ruthenium(II)-rhenium(I) polypyridyl metallomacrocycles. All combinations identified were effective in BRCA-proficient breast cancer cells, including an Olaparib-resistant cell line, and spheroid models. Mechanistic studies indicated that synergy was achieved via DNA-damage enhancement and resultant apoptosis. Combinations showed low cytotoxicity toward non-malignant breast epithelial cells and low acute and developmental toxicity in zebrafish embryos. This work identifies RPC metallomacrocycles as a novel class of agents for cancer combination therapy and provides a proof of concept for the inclusion of metallocompounds within drug synergy screens.


Assuntos
Neoplasias Ovarianas , Rutênio , Humanos , Animais , Feminino , Rutênio/farmacologia , Rutênio/uso terapêutico , Peixe-Zebra , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , DNA , Linhagem Celular Tumoral
2.
J Am Chem Soc ; 145(2): 1236-1246, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36607895

RESUMO

Ruthenium(II) polypyridyl complexes (RPCs) that emit from metal-to-ligand charge transfer (MLCT) states have been developed as DNA probes and are being examined as potential anticancer agents. Here, we report that MLCT-emissive RPCs that bind DNA undergo Förster resonance energy transfer (FRET) with Cy5.5-labeled DNA, forming mega-Stokes shift FRET pairs. Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-"light switch" complexes [Ru(dppz)2(5,5'dmb)]2+ and [Ru(PIP)2(5,5'dmb)]2+ (dppz = dipyridophenazine, 5,5'dmb = 5,5'-dimethyl-2,2'-bipyridine, PIP = 2-phenyl-imidazo[4,5-f][1,10]phenanthroline). Binding affinities toward duplex, G-quadruplex, three-way junction, and mismatch DNA were determined, and derived FRET donor-acceptor proximities provide information on potential binding sites. Molecules characterized by this method demonstrate encouraging anticancer properties, including synergy with the PARP inhibitor Olaparib, and mechanistic studies indicate that [Ru(PIP)2(5,5'dmb)]2+ acts to block DNA replication fork progression.


Assuntos
Complexos de Coordenação , Rutênio , Rutênio/farmacologia , Rutênio/química , Transferência Ressonante de Energia de Fluorescência , DNA/química , Sítios de Ligação , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
3.
Sci Rep ; 13(1): 1456, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702871

RESUMO

Poly(ADP-ribose) polymerase (PARP) are critical DNA repair enzymes that are activated as part of the DNA damage response (DDR). Although inhibitors of PARP (PARPi) have emerged as small molecule drugs and have shown promising therapeutic effects, PARPi used as single agents are clinically limited to patients with mutations in germline breast cancer susceptibility gene (BRCA). Thus, novel PARPi combination strategies may expand their usage and combat drug resistance. In recent years, ruthenium polypyridyl complexes (RPCs) have emerged as promising anti-cancer candidates due to their attractive DNA binding properties and distinct mechanisms of action. Previously, we reported the rational combination of the RPC DNA replication inhibitor [Ru(dppz)2(PIP)]2+ (dppz = dipyrido[3,2-a:2',3'-c]phenazine, PIP = 2-(phenyl)-imidazo[4,5-f][1,10]phenanthroline), "Ru-PIP", with the PARPi Olaparib in breast cancer cells. Here, we expand upon this work and examine the combination of Ru-PIP with Olaparib for synergy in lung cancer cells, including in 3D lung cancer spheroids, to further elucidate mechanisms of synergy and additionally assess toxicity in a zebrafish embryo model. Compared to single agents alone, Ru-PIP and Olaparib synergy was observed in both A549 and H1975 lung cancer cell lines with mild impact on normal lung fibroblast MRC5 cells. Employing the A549 cell line, synergy was confirmed by loss in clonogenic potential and reduced migration properties. Mechanistic studies indicated that synergy is accompanied by increased double-strand break (DSB) DNA damage and reactive oxygen species (ROS) levels which subsequently lead to cell death via apoptosis. Moreover, the identified combination was successfully able to inhibit the growth of A549 lung cancer spheroids and acute zebrafish embryos toxicity studies revealed that this combination showed reduced toxicity compared to single-agent Ru-PIP.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Rutênio , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , DNA , Substâncias Intercalantes , Neoplasias Pulmonares/tratamento farmacológico , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Rutênio/farmacologia , Rutênio/química , Peixe-Zebra , Humanos
4.
ChemMedChem ; 15(22): 2121-2135, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32812709

RESUMO

Platinum drugs are heavily used first-line chemotherapeutic agents for many solid tumours and have stimulated substantial interest in the biological activity of DNA-binding metal complexes. These complexes generate DNA lesions which trigger the activation of DNA damage response (DDR) pathways that are essential to maintain genomic integrity. Cancer cells exploit this intrinsic DNA repair network to counteract many types of chemotherapies. Now, advances in the molecular biology of cancer has paved the way for the combination of DDR inhibitors such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) and agents that induce high levels of DNA replication stress or single-strand break damage for synergistic cancer cell killing. In this review, we summarise early-stage, preclinical and clinical findings exploring platinum and emerging ruthenium anti-cancer complexes alongside PARPi in combination therapy for cancer and also describe emerging work on the ability of ruthenium and gold complexes to directly inhibit PARP activity.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ouro/química , Ouro/farmacologia , Humanos , Neoplasias/metabolismo , Platina/química , Platina/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Rutênio/química , Rutênio/farmacologia
5.
ACS Chem Biol ; 15(2): 378-387, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31898884

RESUMO

There is a need to improve and extend the use of clinically approved poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi), including for BRCA wild-type triple-negative breast cancer (TNBC). The demonstration that ruthenium(II) polypyridyl complex (RPC) metallointercalators can rapidly stall DNA replication fork progression provides the rationale for their combination alongside DNA damage response (DDR) inhibitors to achieve synergism in cancer cells. The aim of the present study was to evaluate use of the multi-intercalator [Ru(dppz)2(PIP)]2+ (dppz = dipyrido[3,2-a:2',3'-c]phenazine, PIP = (2-(phenyl)imidazo[4,5-f][1,10]phenanthroline, Ru-PIP) alongside the PARPi olaparib and NU1025. Cell proliferation and clonogenic survival assays indicated a synergistic relationship between Ru-PIP and olaparib in MDA-MB-231 TNBC and MCF7 human breast cancer cells. Strikingly, low dose Ru-PIP renders both cell lines hypersensitive to olaparib, with a >300-fold increase in olaparib potency in TNBC, the largest nongenetic PARPi enhancement effect described to date. A negligible impact on the viability of normal human fibroblasts was observed for any combination tested. Increased levels of DNA double-strand break (DSB) damage and olaparib abrogation of Ru-PIP-activated pChk1 signaling are consistent with PARPi-facilitated collapse of Ru-PIP-associated stalled replication forks. This results in enhanced G2/M cell-cycle arrest, apoptosis, and decreased cell motility for the combination treatment compared to single-agent conditions. This work establishes that an RPC metallointercalator can be combined with PARPi for potent synergy in BRCA-proficient breast cancer cells, including TNBC.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Substâncias Intercalantes/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Rutênio/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...