Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(41): 46581-46594, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194123

RESUMO

Finding the active center in a bimetallic zeolite imidazolate framework (ZIF) is highly crucial for the electrocatalytic oxygen evolution reaction (OER). In the present study, we constructed a bimetallic ZIF system with cobalt and manganese metal ions and subjected it to an electrospinning technique for feasible fiber formation. The obtained nanofibers delivered a lower overpotential value of 302 mV at a benchmarking current density of 10 mA cm-2 in an electrocatalytic OER study under alkaline conditions. The obtained Tafel slope and charge-transfer resistance values were 125 mV dec-1 and 4 Ω, respectively. The kinetics of the reaction is mainly attributed from the ratio of metals (Co and Mn) present in the catalyst. Jahn-Teller distortion reveals that the electrocatalytic active center on the Mn-incorporated ZIF-67 nanofibers (Mn-ZIF-67-NFs) was found to be Mn3+ along with the Mn2+ and Co2+ ions on the octahedral and tetrahedral sites, respectively, where Co2+ ions tend to suppress the distortion, which is well supported by density functional theory analysis, molecular orbital study, and magnetic studies.

2.
ACS Omega ; 3(3): 2918-2933, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458563

RESUMO

Two stable nitronyl nitroxide free radicals {R 1 = 4'-methoxy-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (NNPhOMe) and R 2 = 2-(2'-thienyl)-4,4,5,5-tetramethylimidazoline 3-oxide 1-oxyl (NNT)} are successfully synthesized using Ullmann condensation. The reactions of these two radicals with 3d transition metal ions, in the form of M(hfac)2 (where M = Co or Mn, hfac: hexafluoroacetylacetone), result in four metal-organic complexes Co(hfac)2(NNPhOMe)2, 1; Co(hfac)2(NNT)2·(H2O), 2; Mn(hfac)2(NNPhOMe)·x(C7H16), 3; and Mn(hfac)2(NNT)2, 4. The crystal structure and magnetic properties of these complexes are investigated by single-crystal X-ray diffraction, dc magnetization, infrared, and electron paramagnetic resonance spectroscopies. The compounds 1 and 4 crystallize in the triclinic, P1̅, space group, whereas complex 3 crystallizes in the monoclinic structure with the C2/c space group and forms chain-like structure along the c direction. The complex 2 crystallizes in the monoclinic symmetry with the P21/c space group in which the N-O unit of the radical coordinates with the Co ion through hydrogen bonding of a water molecule. All compounds exhibit antiferromagnetic interactions between the transition metal ions and nitronyl nitroxide radicals. The magnetic exchange interactions (J/K B) are derived using isotropic spin Hamiltonian H = -2J∑(S metal S radical) for the model fitting to the magnetic susceptibility data for 1, 2, 3, and 4. The exchange interaction strengths are found to be -328, -1.25, -248, and -256 K, for the 1, 2, 3, and 4 metal-organic complexes, respectively. Quantum chemical density functional theory (DFT) computations are carried out on several models of the metal-radical complexes to elucidate the magnetic interactions at the molecular level. The calculations show that a small part of the inorganic spins are delocalized over the oxygens from hfac {∼0.03 for Co(II) and ∼0.015 for Mn(II)}, whereas a more significant fraction {∼0.24 for Mn(II) and ∼0.13 for Co(II)} of delocalized spins from the metal ion is transferred to the coordinated oxygen atom(s) of nitronyl nitroxide.

3.
Small ; 2(1): 135-41, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17193569

RESUMO

The development of synthetic processes for oxide nanomaterials is an issue of considerable topical interest. While a number of chemical methods are available and are extensively used, the collaborations are often energy intensive and employ toxic chemicals. On the other hand, the synthesis of inorganic materials by biological systems is characterized by processes that occur at close to ambient temperatures and pressures, and at neutral pH (examples include magnetotactic bacteria, diatoms, and S-layer bacteria). Here we show that nanoparticulate magnetite may be produced at room temperature extracellularly by challenging the fungi, Fusarium oxysporum and Verticillium sp., with mixtures of ferric and ferrous salts. Extracellular hydrolysis of the anionic iron complexes by cationic proteins secreted by the fungi results in the room-temperature synthesis of crystalline magnetite particles that exhibit a signature of a ferrimagnetic transition with a negligible amount of spontaneous magnetization at low temperature.


Assuntos
Cristalização/métodos , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/metabolismo , Fusarium/metabolismo , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Verticillium/metabolismo , Líquido Extracelular/química , Líquido Extracelular/metabolismo , Magnetismo , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...