Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744221

RESUMO

Advanced cholangiocarcinoma (CCA) presents a clinical challenge due to limited treatment options, necessitating exploration of innovative therapeutic approaches. Bispecific T cell engager (BTE)-armed T cell therapy shows promise in hematological and solid malignancies, offering potential advantages in safety over continuous BTE infusion. In this context, we developed a novel BTE, targeting CD3 on T cells and integrin αvß6, an antigen elevated in various epithelial malignancies, on cancer cells. The novel BTE was generated by fusing an integrin αvß6-binding peptide (A20) to an anti-CD3 (OKT3) single-chain variable fragment (scFv) through a G4S peptide linker (A20/αCD3 BTE). T cells were then armed with A20/αCD3 BTE (A20/αCD3-armed T cells) and assessed for antitumor activity. Our results highlight the specific binding of A20/αCD3 BTE to CD3 on T cells and integrin αvß6 on target cells, effectively redirecting T cells towards these targets. After co-culture, A20/αCD3-armed T cells exhibited significantly heightened cytotoxicity against integrin αvß6-expressing target cells compared to unarmed T cells in both KKU-213A cells and A375.ß6 cells. Moreover, in a five-day co-culture, A20/αCD3-armed T cells demonstrated superior cytotoxicity against KKU-213A spheroids compared to unarmed T cells. Importantly, A20/αCD3-armed T cells exhibited an increased proportion of the effector memory T cell (Tem) subset, upregulation of T cell activation markers, enhanced T cell proliferation, and increased cytolytic molecule/cytokine production, when compared to unarmed T cells in an integrin αvß6-dependent manner. These findings support the potential of A20/αCD3-armed T cells as a novel therapeutic approach for integrin αvß6-expressing cancers.


Assuntos
Antígenos de Neoplasias , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Integrinas , Linfócitos T , Humanos , Colangiocarcinoma/imunologia , Colangiocarcinoma/terapia , Colangiocarcinoma/patologia , Antígenos de Neoplasias/imunologia , Linfócitos T/imunologia , Integrinas/metabolismo , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/terapia , Complexo CD3/imunologia , Anticorpos de Cadeia Única/farmacologia , Técnicas de Cocultura , Anticorpos Biespecíficos/farmacologia
2.
Clin Exp Med ; 24(1): 90, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683232

RESUMO

Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the rapid proliferation of malignant plasma cells within the bone marrow. Standard therapies often fail due to patient resistance. The US FDA has approved second-generation chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (anti-BCMA-CAR2 T cells) for MM treatment. However, achieving enduring clinical responses remains a challenge in CAR T cell therapy. This study developed third-generation T cells with an anti-BCMA CAR (anti-BCMA-CAR3). The CAR incorporated a fully human scFv specific to BCMA, linked to the CD8 hinge region. The design included the CD28 transmembrane domain, two co-stimulatory domains (CD28 and 4-1BB), and the CD3ζ signaling domain (28BBζ). Lentiviral technology generated these modified T cells, which were compared against anti-BCMA-CAR2 T cells for efficacy against cancer. Anti-BCMA-CAR3 T cells exhibited significantly higher cytotoxic activity against BCMA-expressing cells (KMS-12-PE and NCI-H929) compared to anti-BCMA-CAR2 T cells. At an effector-to-target ratio of 10:1, anti-BCMA-CAR3 T cells induced lysis in 75.5 ± 3.8% of NCI-H929 cells, whereas anti-BCMA-CAR2 T cells achieved 56.7 ± 3.4% (p = 0.0023). Notably, after twelve days of cultivation, anti-BCMA-CAR3 T cells nearly eradicated BCMA-positive cells (4.1 ± 2.1%), while anti-BCMA-CAR2 T cells allowed 36.8 ± 20.1% to survive. This study highlights the superior efficacy of anti-BCMA-CAR3 T cells against both low and high BCMA-expressing MM cells, surpassing anti-BCMA-CAR2 T cells. These findings suggest potential for advancing anti-BCMA-CAR3 T cells in chimeric antigen receptor T (CAR-T) therapy for relapsed/refractory MM.


Assuntos
Antígeno de Maturação de Linfócitos B , Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Linfócitos T , Mieloma Múltiplo/terapia , Mieloma Múltiplo/imunologia , Antígeno de Maturação de Linfócitos B/imunologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Animais
3.
Int Immunopharmacol ; 129: 111631, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38359664

RESUMO

The treatment of breast cancer (BC) remains a formidable challenge due to the emergence of drug resistance, necessitating the exploration of innovative strategies. Chimeric antigen receptor (CAR)-T cell therapy, a groundbreaking approach in hematologic malignancies, is actively under investigation for its potential application in solid tumors, including BC. Trophoblast cell surface antigen 2 (Trop2) has emerged as a promising immunotherapeutic target in various cancers and is notably overexpressed in BC. To enhance therapeutic efficacy in BC, a fourth-generation CAR (CAR4) construct was developed. This CAR4 design incorporates an anti-Trop2 single-chain variable fragment (scFv) fused with three costimulatory domains -CD28/4-1BB/CD27, and CD3ζ. Comparative analysis with the conventional second-generation CAR (CAR2; 28ζ) revealed that anti-Trop2 CAR4 T cells exhibited heightened cytotoxicity and interferon-gamma (IFN-γ) production against Trop2-expressing MCF-7 cells. Notably, anti-Trop2 CAR4-T cells demonstrated superior long-term cytotoxic functionality and proliferative capacity. Crucially, anti-Trop2 CAR4-T cells displayed specific cytotoxicity against Trop2-positive BC cells (MDA-MB-231, HCC70, and MCF-7) in both two-dimensional (2D) and three-dimensional (3D) culture systems. Following antigen-specific killing, these cells markedly secreted interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α), IFN-γ, and Granzyme B compared to non-transduced T cells. This study highlights the therapeutic potential of anti-Trop2 CAR4-T cells in adoptive T cell therapy for BC, offering significant promise for the advancement of BC treatment strategies.


Assuntos
Neoplasias da Mama , Receptores de Antígenos de Linfócitos T , Humanos , Feminino , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Imunoterapia Adotiva/métodos , Interferon gama/metabolismo , Linhagem Celular Tumoral
4.
Biomed Pharmacother ; 168: 115691, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844355

RESUMO

Chimeric antigen receptor (CAR) T cell therapy targeting B cell maturation antigen (BCMA) has been approved for treating multiple myeloma (MM). Some clinical studies reported suboptimal outcomes, including reduced cytotoxicity of CAR-T cells and tumor evasion through increased expression of programmed death-ligand 1 (PD-L1). To enhance CAR-T cell efficiency and overcome PD-L1-mediated T cell suppression, we developed anti-BCMA-CAR5-T cells equipped with three costimulatory domains and the ability to secrete anti-PD-L1 single-chain variable fragment (scFv) blockade molecules. Anti-BCMA-CAR4-T cells contained a fully human anti-BCMA scFv and three intracellular domains (CD28, 4-1BB, and CD27) joined with CD3ζ. Anti-BCMA-CAR5-T cells were generated by fusing anti-BCMA-CAR4 with anti-PD-L1 scFv. Both anti-BCMA-CAR4-T and anti-BCMA-CAR5-T cells demonstrated comparable antitumor activity against parental MM cells. However, at an effector-to-target ratio of 1:2, only anti-BCMA-CAR5-T cells maintained cytolytic activity against PD-L1 high MM cells, unlike anti-BCMA-CAR4 T cells. Anti-BCMA-CAR5-T cells were specifically activated by BCMA-expressing target cells, resulting in increased CAR-T cell proliferation, release of cytolytic mediators, and pro-inflammatory cytokines. Anti-BCMA-CAR5-T cells demonstrated specific cytotoxicity against BCMA-expressing target cells, leading to decreased target cell numbers, increased CAR-T cell numbers, and preserved CAR expression during antigenic re-stimulation. Interestingly, only anti-BCMA-CAR5-T cells showed reduced PD-1 receptor levels, which correlated with decreased PD-L1 expression on target cells. We successfully generated anti-BCMA-CAR5-T cells capable of secreting anti-PD-L1 scFv. These cells exhibited superior antitumor efficiency, proliferative capacity, and alleviated T-cell exhaustion against MM cells. Further investigation into the antitumor efficacy of anti-BCMA-CAR5-T cells is warranted in ex vivo and clinical research settings.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/patologia , Antígeno de Maturação de Linfócitos B/metabolismo , Antígeno B7-H1/metabolismo , Exaustão das Células T , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Linfócitos T
5.
Int Immunopharmacol ; 113(Pt B): 109442, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36435066

RESUMO

Adoptive T cell therapy using second-generation anti-CD19 chimeric antigen receptor T cells (anti-CD19-CAR2-T) induced complete remission in many heavily pretreated patients with B cell acute lymphoblastic leukemia (B-ALL) or diffuse large B cell lymphoma (DLBCL). However, poor clinical efficacy was observed in treating aggressive B cell lymphomas (BCL). The limited T cell function was reported by programmed cell death protein 1 ligand (PD-L1) expressed on BCL cells bound to the PD-1 receptor on T cells. To overcome this problem, we generated anti-CD19-CAR4-T cells secreting anti-PD-L1 single-chain variable fragment (scFv), namely anti-CD19-CAR5-T cells, and evaluated their functions in vitro. Both anti-CD19-CAR-T cells contain an anti-CD19 scFv derived from a monoclonal antibody, FMC63, linked to CD28/4-1BB/CD27/CD3ζ. The secreting anti-PD-L1 scFv is derived from atezolizumab. Our results showed that secreted anti-PD-L1 scFv could bind to PD-L1 and block the binding of anti-PD-L1 monoclonal antibodies on PD-L1high tumor cells. Anti-CD19-CAR4-T and anti-CD19-CAR5-T cells efficiently killed CD19+ target tumor cells in two-dimensional (2D) and three-dimensional (3D) co-culture systems. However, anti-CD19-CAR5-T cells demonstrated superior proliferative ability. Interestingly, at a low effector (E) to target (T) ratio of 0.5:1, anti-CD19-CAR5-T cells showed higher cytotoxicity against CD19+/PD-L1high cells compared to that of anti-CD19-CAR4-T cells. The cytotoxicity of anti-CD19-CAR4-T cells against CD19+/PD-L1high could be restored by adding anti-PD-L1 scFv. Our findings demonstrate the combination antitumor efficiency of anti-CD19-CAR4-T cells and anti-PD-L1 scFv against CD19+/PD-L1high tumors. As such, anti-CD19-CAR5-T cells should be further investigated in vivo antitumor efficiency and clinical trials as a treatment for aggressive B cell lymphoma.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Anticorpos de Cadeia Única/uso terapêutico , Ligantes , Linfócitos T , Antígenos CD19 , Proteínas Adaptadoras de Transdução de Sinal
6.
Front Oncol ; 11: 802876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35117999

RESUMO

Second-generation anti-CD19-chimeric antigen receptor T cells (anti-CD19-CAR2 T cells) are effective for treating B-cell malignancies; however, anti-CD19-CAR2 T cells can induce human anti-mouse immune responses because anti-CD19 single-chain variable fragment (scFv) in the CAR molecules is derived from a murine FMC63 (mFMC63) monoclonal antibody. Consequently, the persistence of mFMC63-CAR2 T cells and their therapeutic efficiency in patients are decreased, which results in tumor relapse. In an attempt to remedy this shortcoming, we generated a new anti-CD19-CAR T cells containing fully human anti-CD19 scFv (Hu1E7-CAR4 T cells) to pre-clinically evaluate and compare with mFMC63-CAR4 T cells. The human anti-CD19 scFv (Hu1E7) was isolated from a human scFv phage display library and fused to the hinge region of CD8α, the transmembrane domain of CD28, three intracellular costimulatory domains (CD28, 4-1BB, and CD27), and a CD3ζ signaling domain (28BB27ζ). Compared to mFMC63-CAR2 T cells (BBζ) and mFMC63-CAR3 (BB27ζ), the mFMC63-CAR4 T cells (28BB27ζ) exerted superior anti-tumor activity against Raji (CD19+) target cell. The Hu1E7-CAR4 and mFMC63-CAR4 T cells demonstrated comparable cytotoxicity and proliferation. Interestingly, compared to mFMC63-CAR4 T cells, the Hu1E7-CAR4 T cells secreted lower levels of cytokines (IFN-γ and TNF-α), which may be due to the lower binding affinity of Hu1E7-CAR4 T cells. These findings demonstrated the successfulness in creation of a new CAR T cells containing a novel fully human-derived scFv specific to CD19+ cancer cells. In vivo studies are needed to further compare the anti-tumor efficacy and safety of Hu1E7-CAR4 T cells and mFMC63-CAR4 T cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...