Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(2): 103063, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38735040

RESUMO

Studying neuronal morphology requires imaging and accurate extraction of tree-like shapes from noisy microscopy data. Here, we present a protocol for automatic reconstruction of branched structures from microscopy images using Neuronalyzer software. We describe the steps for loading neuron images, denoising, segmentation, and tracing. We then detail feature extraction (e.g., branch curvature and junction angles), data analysis, and plotting. The software allows batch processing and statistical comparisons across datasets. Neuronalyzer is scale-free and handles noise and variation across images. For complete details on the use and execution of this protocol, please refer to Yuval et al.1.


Assuntos
Dendritos , Processamento de Imagem Assistida por Computador , Microscopia , Neurônios , Software , Processamento de Imagem Assistida por Computador/métodos , Neurônios/citologia , Microscopia/métodos , Animais
2.
PLoS Comput Biol ; 17(7): e1009185, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34280180

RESUMO

Complex dendritic trees are a distinctive feature of neurons. Alterations to dendritic morphology are associated with developmental, behavioral and neurodegenerative changes. The highly-arborized PVD neuron of C. elegans serves as a model to study dendritic patterning; however, quantitative, objective and automated analyses of PVD morphology are missing. Here, we present a method for neuronal feature extraction, based on deep-learning and fitting algorithms. The extracted neuronal architecture is represented by a database of structural elements for abstracted analysis. We obtain excellent automatic tracing of PVD trees and uncover that dendritic junctions are unevenly distributed. Surprisingly, these junctions are three-way-symmetrical on average, while dendritic processes are arranged orthogonally. We quantify the effect of mutation in git-1, a regulator of dendritic spine formation, on PVD morphology and discover a localized reduction in junctions. Our findings shed new light on PVD architecture, demonstrating the effectiveness of our objective analyses of dendritic morphology and suggest molecular control mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Dendritos/metabolismo , Algoritmos , Animais , Comportamento Animal/fisiologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Biologia Computacional , Dendritos/genética , Dendritos/ultraestrutura , Modelos Neurológicos , Mutação , Redes Neurais de Computação , Neurogênese/genética , Neurogênese/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Fenótipo
3.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361147

RESUMO

Inhibition plays important roles in modulating the neural activities of sensory and motor systems at different levels from synapses to brain regions. To achieve coordinated movement, motor systems produce alternating contractions of antagonist muscles, whether along the body axis or within and among limbs, which often involves direct or indirect cross-inhibitory pathways. In the nematode Caenorhabditis elegans, a small network involving excitatory cholinergic and inhibitory GABAergic motoneurons generates the dorsoventral alternation of body-wall muscles that supports undulatory locomotion. Inhibition has been suggested to be necessary for backward undulation because mutants that are defective in GABA transmission exhibit a shrinking phenotype in response to a harsh touch to the head, whereas wild-type animals produce a backward escape response. Here, we demonstrate that the shrinking phenotype is exhibited by wild-type as well as mutant animals in response to harsh touch to the head or tail, but only GABA transmission mutants show slow locomotion after stimulation. Impairment of GABA transmission, either genetically or optogenetically, induces lower undulation frequency and lower translocation speed during crawling and swimming in both directions. The activity patterns of GABAergic motoneurons are different during low-frequency and high-frequency undulation. During low-frequency undulation, GABAergic VD and DD motoneurons show correlated activity patterns, while during high-frequency undulation, their activity alternates. The experimental results suggest at least three non-mutually exclusive roles for inhibition that could underlie fast undulatory locomotion in C. elegans, which we tested with computational models: cross-inhibition or disinhibition of body-wall muscles, or neuronal reset.


Assuntos
Caenorhabditis elegans , Locomoção , Animais , Neurônios Motores , Músculos , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...