Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-223784

RESUMO

The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro) to digest two of its translated polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replication in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1MPro), we have designed and synthesized a series of SC2MPro inhibitors that contain {beta}-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active site cysteine C145. All inhibitors display high potency with IC50 values at or below 100 nM. The most potent compound MPI3 has as an IC50 value as 8.5 nM. Crystallographic analyses of SC2MPro bound to 7 inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549 cells. Two inhibitors MP5 and MPI8 completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 M and A549 cells at 0.16-0.31 M. Their virus inhibition potency is much higher than some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with extreme potency. Due to the urgent matter of the COVID-19 pandemic, MPI5 and MPI8 may be quickly advanced to preclinical and clinical tests for COVID-19.

2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-449593

RESUMO

OBJECTIVE: To observe the effects of Pollen Typhae total flavone (PTF) on glucose and lipid metabolism in 3T3-L1 adipocytes. METHODS: The content of glucose which disappeared from the culture medium after incubation with drugs for 24 hours was determined as glucose consumption of the cells. The activity of cells was detected by XTT method. The transport of glucose was observed by (3)H-glucose uptake method. The efflux of free fatty acid (FFA) from adipocytes was observed by the concentration of FFA in the culture medium. RESULTS: The glucose concentration in culture medium was significantly decreased with a concentration-dependent effect, when PTF concentrations were from 0.025 g/L to 0.4 g/L. The toxic effect on cells appeared while PTF concentration was 0.4 g/L, and the MTT value decreased. PTF also significantly increased glucose transportation in the 3T3-L1 adipocytes as rosiglitazone (ROS) did. At the same time, FFA concentration in culture medium was significantly decreased as compared to the normal control group, while ROS-treated group did not show any difference. CONCLUSION: PTF can increase insulin sensitivity by increasing glucose transportation and consumption in the 3T3-L1 adipocytes as well as decreasing the FFA efflux from the cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...