Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
FEBS Open Bio ; 13(1): 185-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416450

RESUMO

Macrophages distributed in tissues throughout the body contribute to homeostasis. In the inflammatory state, macrophages undergo mechanical stress that regulates the signal transduction of immune responses and various cellular functions. However, the effects of the inflammatory response on macrophages under physiological cyclic stretch are unclear. We found that physiological cyclic stretch suppresses inflammatory cytokine expression in macrophages by regulating NF-κB activity. NF-κB phosphorylation at Ser536 in macrophages was inhibited, suggesting that tank-binding kinase (TBK1) regulates NF-κB activity during physiological stress. Moreover, TBK1 expression was suppressed by physiological stretch, and TBK1 knockdown by siRNA induced the suppression of NF-κB phosphorylation at Ser536. In conclusion, physiological stretch triggers suppression of a TBK1-dependent excessive inflammatory response, which may be necessary to maintain tissue homeostasis.


Assuntos
Lipopolissacarídeos , NF-kappa B , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Transdução de Sinais , Imunidade
2.
Sci Rep ; 12(1): 1377, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082348

RESUMO

Muscle wasting is a major problem leading to reduced quality of life and higher risks of mortality and various diseases. Muscle atrophy is caused by multiple conditions in which protein degradation exceeds its synthesis, including disuse, malnutrition, and microgravity. While Vitamin D receptor (VDR) is well known to regulate calcium and phosphate metabolism to maintain bone, recent studies have shown that VDR also plays roles in skeletal muscle development and homeostasis. Moreover, its expression is upregulated in muscle undergoing atrophy as well as after muscle injury. Here we show that VDR regulates simulated microgravity-induced atrophy in C2C12 myotubes in vitro. After 8 h of microgravity simulated using 3D-clinorotation, the VDR-binding motif was associated with chromatin regions closed by the simulated microgravity and enhancer regions inactivated by it, which suggests VDR mediates repression of enhancers. In addition, VDR was induced and translocated into the nuclei in response to simulated microgravity. VDR-deficient C2C12 myotubes showed resistance to simulated microgravity-induced atrophy and reduced induction of FBXO32, an atrophy-associated ubiquitin ligase. These results demonstrate that VDR contributes to the regulation of simulated microgravity-induced atrophy at least in part by controlling expression of atrophy-related genes.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Mioblastos Esqueléticos/metabolismo , Receptores de Calcitriol/metabolismo , Transdução de Sinais/genética , Simulação de Ausência de Peso/efeitos adversos , Animais , Linhagem Celular , Técnicas de Inativação de Genes/métodos , Homeostase/genética , Camundongos , Desenvolvimento Muscular/genética , Atrofia Muscular/genética , Receptores de Calcitriol/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...