Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 33(3): 531-547, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955497

RESUMO

Leaves are asymmetric, with different functions for adaxial and abaxial tissue. The bundle sheath (BS) of C3 barley (Hordeum vulgare) is dorsoventrally differentiated into three types of cells: adaxial structural, lateral S-type, and abaxial L-type BS cells. Based on plasmodesmatal connections between S-type cells and mestome sheath (parenchymatous cell layer below bundle sheath), S-type cells likely transfer assimilates toward the phloem. Here, we used single-cell RNA sequencing to investigate BS differentiation in C4 maize (Zea mays L.) plants. Abaxial BS (abBS) cells of rank-2 intermediate veins specifically expressed three SWEET sucrose uniporters (SWEET13a, b, and c) and UmamiT amino acid efflux transporters. SWEET13a, b, c mRNAs were also detected in the phloem parenchyma (PP). We show that maize has acquired a mechanism for phloem loading in which abBS cells provide the main route for apoplasmic sucrose transfer toward the phloem. This putative route predominates in veins responsible for phloem loading (rank-2 intermediate), whereas rank-1 intermediate and major veins export sucrose from the PP adjacent to the sieve element companion cell complex, as in Arabidopsis thaliana. We surmise that abBS identity is subject to dorsoventral patterning and has components of PP identity. These observations provide insights into the unique transport-specific properties of abBS cells and support a modification to the canonical phloem loading pathway in maize.


Assuntos
Floema/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Floema/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Zea mays/genética
2.
STAR Protoc ; 2(2): 100398, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33796873

RESUMO

RNA in situ hybridization can be time-consuming and difficult to troubleshoot. Here, we provide an optimized protocol for maize leaf tissue, though it can be applied to other plant tissues such as shoot apical meristems, embryos, and floral organs. We generate three >100 bp unique antisense probes for each gene of interest and hybridize them to tissue sections. For complete details on the use and execution of this protocol, please refer to Bezrutczyk et al. (2021).


Assuntos
Hibridização In Situ/métodos , RNA , Zea mays/genética , Microscopia/métodos , Folhas de Planta/química , Folhas de Planta/genética , RNA/análise , RNA/química , RNA/genética , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...