Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30676324

RESUMO

Macrophage activation, i.e., classical M1 and the alternative M2, plays a critical role in many pathophysiological processes, such as inflammation and tissue injury and repair. Although the regulation of macrophage activation has been under extensive investigation, there is little knowledge about the role of long noncoding RNAs (lncRNAs) in this event. In this study, we found that lncRNA Malat1 expression is distinctly regulated in differentially activated macrophages in that it is upregulated in LPS-treated and downregulated in IL-4-treated cells. Malat1 knockdown attenuates LPS-induced M1 macrophage activation. In contrast, Malat1 knockdown enhanced IL-4-activated M2 differentiation as well as a macrophage profibrotic phenotype. Mechanistically, Malat1 knockdown led to decreased expression of Clec16a, silencing of which phenocopied the regulatory effect of Malat1 on M1 activation. Interestingly, Malat1 knockdown promoted IL-4 induction of mitochondrial pyruvate carriers (MPCs) and their mediation of glucose-derived oxidative phosphorylation (OxPhos), which was crucial to the Malat1 regulation of M2 differentiation and profibrotic phenotype. Furthermore, mice with either global or conditional myeloid knockout of Malat1 demonstrated diminished LPS-induced systemic and pulmonary inflammation and injury. In contrast, these mice developed more severe bleomycin-induced lung fibrosis, accompanied by alveolar macrophages displaying augmented M2 and profibrotic phenotypes. In summary, we have identified what we believe is a previously unrecognized role of Malat1 in the regulation of macrophage polarization. Our data demonstrate that Malat1 is involved in pulmonary pathogeneses in association with aberrant macrophage activation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Lectinas Tipo C/genética , Pulmão/patologia , Ativação de Macrófagos/genética , Macrófagos Alveolares/imunologia , Proteínas de Transporte de Monossacarídeos/genética , RNA Longo não Codificante/metabolismo , Lesão Pulmonar Aguda/diagnóstico , Lesão Pulmonar Aguda/genética , Animais , Bleomicina/toxicidade , Líquido da Lavagem Broncoalveolar , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Fibrose , Técnicas de Silenciamento de Genes , Humanos , Lectinas Tipo C/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Pulmão/citologia , Pulmão/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/imunologia , RNA Longo não Codificante/genética , Regulação para Cima/genética , Regulação para Cima/imunologia
3.
PLoS One ; 14(1): e0210515, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30653565

RESUMO

During erythropoiesis, haematopoietic stem cells (HSCs) differentiate in successive steps of commitment and specification to mature erythrocytes. This differentiation process is controlled by transcription factors that establish stage- and cell type-specific gene expression. In this study, we demonstrate that FUSE binding protein 1 (FUBP1), a transcriptional regulator important for HSC self-renewal and survival, is regulated by T-cell acute lymphocytic leukaemia 1 (TAL1) in erythroid progenitor cells. TAL1 directly activates the FUBP1 promoter, leading to increased FUBP1 expression during erythroid differentiation. The binding of TAL1 to the FUBP1 promoter is highly dependent on an intact GATA sequence in a combined E-box/GATA motif. We found that FUBP1 expression is required for efficient erythropoiesis, as FUBP1-deficient progenitor cells were limited in their potential of erythroid differentiation. Thus, the finding of an interconnection between GATA1/TAL1 and FUBP1 reveals a molecular mechanism that is part of the switch from progenitor- to erythrocyte-specific gene expression. In summary, we identified a TAL1/FUBP1 transcriptional relationship, whose physiological function in haematopoiesis is connected to proper erythropoiesis.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Células Precursoras Eritroides/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Células A549 , Proteínas de Ligação a DNA/metabolismo , Eritropoese/genética , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Células HEK293 , Células HL-60 , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Regulação para Cima
4.
Leukemia ; 33(7): 1700-1712, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30635626

RESUMO

The transcriptional regulator far upstream element binding protein 1 (FUBP1) acts as an oncoprotein in solid tumor entities and plays a role in the maintenance of hematopoietic stem cells. However, its potential function in leukemia is unknown. In murine models of chronic (CML) and acute myeloid leukemia (AML) induced by BCR-ABL1 and MLL-AF9, respectively, knockdown of Fubp1 resulted in prolonged survival, decreased numbers of CML progenitor cells, decreased cell cycle activity and increased apoptosis. Knockdown of FUBP1 in CML and AML cell lines recapitulated these findings and revealed enhanced DNA damage compared to leukemia cells expressing wild type FUBP1 levels. FUBP1 was more highly expressed in human CML compared to normal bone marrow cells and its expression correlated with disease progression. In AML, higher FUBP1 expression in patient leukemia cells was observed with a trend toward correlation with shorter overall survival. Treatment of mice with AML with irinotecan, known to inhibit topoisomerase I and FUBP1, significantly prolonged survival alone or in combination with cytarabine. In summary, our data suggest that FUBP1 acts as cell cycle regulator and apoptosis inhibitor in leukemia. We demonstrated that FUBP1 might play a role in DNA repair, and its inhibition may improve outcome in leukemia patients.


Assuntos
Apoptose , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mieloide Aguda/patologia , Proteínas de Ligação a RNA/metabolismo , Animais , Transplante de Medula Óssea , Ciclo Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Irinotecano/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Inibidores da Topoisomerase I/farmacologia , Células Tumorais Cultivadas
5.
Nucleic Acids Res ; 46(21): 11214-11228, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30500954

RESUMO

Runt-related transcription factor 1 (RUNX1) is a well-known master regulator of hematopoietic lineages but its mechanisms of action are still not fully understood. Here, we found that RUNX1 localizes on active chromatin together with Far Upstream Binding Protein 1 (FUBP1) in human B-cell precursor lymphoblasts, and that both factors interact in the same transcriptional regulatory complex. RUNX1 and FUBP1 chromatin localization identified c-KIT as a common target gene. We characterized two regulatory regions, at +700 bp and +30 kb within the first intron of c-KIT, bound by both RUNX1 and FUBP1, and that present active histone marks. Based on these regions, we proposed a novel FUBP1 FUSE-like DNA-binding sequence on the +30 kb enhancer. We demonstrated that FUBP1 and RUNX1 cooperate for the regulation of the expression of the oncogene c-KIT. Notably, upregulation of c-KIT expression by FUBP1 and RUNX1 promotes cell proliferation and renders cells more resistant to the c-KIT inhibitor imatinib mesylate, a common therapeutic drug. These results reveal a new mechanism of action of RUNX1 that implicates FUBP1, as a facilitator, to trigger transcriptional regulation of c-KIT and to regulate cell proliferation. Deregulation of this regulatory mechanism may explain some oncogenic function of RUNX1 and FUBP1.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas de Ligação a RNA/genética , Animais , Antineoplásicos/farmacologia , Sequência de Bases , Sítios de Ligação , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatina/química , Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Mesilato de Imatinib/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Cultura Primária de Células , Ligação Proteica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Rep ; 8(1): 3438, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467431

RESUMO

Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Non-coding RNAs are crucially involved in its pathophysiology. We identified hypoxia-induced long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) to be upregulated in renal I/R injury. We here elucidated the functional role of Malat1 in vitro and its potential contribution to kidney injury in vivo. Malat1 was upregulated in kidney biopsies and plasma of patients with AKI, in murine hypoxic kidney tissue as well as in cultured and ex vivo sorted hypoxic endothelial cells and tubular epithelial cells. Malat1 was transcriptionally activated by hypoxia-inducible factor 1-α. In vitro, Malat1 inhibition reduced proliferation and the number of endothelial cells in the S-phase of the cell cycle. In vivo, Malat1 knockout and wildtype mice showed similar degrees of outer medullary tubular epithelial injury, proliferation, capillary rarefaction, inflammation and fibrosis, survival and kidney function. Small-RNA sequencing and whole genome expression analysis revealed only minor changes between ischemic Malat1 knockout and wildtype mice. Contrary to previous studies, which suggested a prominent role of Malat1 in the induction of disease, we did not confirm an in vivo role of Malat1 concerning renal I/R-injury.


Assuntos
Injúria Renal Aguda/genética , RNA Longo não Codificante/genética , Traumatismo por Reperfusão/genética , Ativação Transcricional , Injúria Renal Aguda/patologia , Animais , Linhagem Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/patologia
7.
Biochem Pharmacol ; 146: 53-62, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29031818

RESUMO

The transcriptional regulator FUSE Binding Protein 1 (FUBP1) is overexpressed in more than 80% of all human hepatocellular carcinomas (HCCs) and other solid tumor entities including prostate and colorectal carcinoma. FUBP1 expression is required for HCC tumor cell expansion, and it functions as an important pro-proliferative and anti-apoptotic oncoprotein that binds to the single-stranded DNA sequence FUSE to regulate the transcription of a variety of target genes. In this study, we screened an FDA-approved drug library and discovered that the Topoisomerase I (TOP1) inhibitor camptothecin (CPT) and its derivative 7-ethyl-10-hydroxycamptothecin (SN-38), the active irinotecan metabolite that is used in the clinics in combination with other chemotherapeutics to treat carcinoma, inhibit FUBP1 activity. Both molecules prevent in vitro the binding of FUBP1 to its single-stranded target DNA FUSE, and they induce deregulation of FUBP1 target genes in HCC cells. Our results suggest the interference with the FUBP1/FUSE interaction as a further molecular mechanism that, in addition to the inactivation of TOP1, may contribute to the therapeutic potential of CPT/SN-38. Targeting of FUBP1 in HCC therapy with SN-38/irinotecan could be a particularly interesting option because of the high FUBP1 levels in HCC cells and their dependency on FUBP1 expression.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/genética , Antineoplásicos Fitogênicos/metabolismo , Camptotecina/metabolismo , Linhagem Celular Tumoral , DNA/química , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Irinotecano , Ligação Proteica , Proteínas de Ligação a RNA
8.
Stem Cells Int ; 2017: 5762301, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588622

RESUMO

The transcriptional regulator far upstream binding protein 1 (FUBP1) is essential for fetal and adult hematopoietic stem cell (HSC) self-renewal, and the constitutive absence of FUBP1 activity during early development leads to embryonic lethality in homozygous mutant mice. To investigate the role of FUBP1 in murine embryonic stem cells (ESCs) and in particular during differentiation into hematopoietic lineages, we generated Fubp1 knockout (KO) ESC clones using CRISPR/Cas9 technology. Although FUBP1 is expressed in undifferentiated ESCs and during spontaneous differentiation following aggregation into embryoid bodies (EBs), absence of FUBP1 did not affect ESC maintenance. Interestingly, we observed a delayed differentiation of FUBP1-deficient ESCs into the mesoderm germ layer, as indicated by impaired expression of several mesoderm markers including Brachyury at an early time point of ESC differentiation upon aggregation to EBs. Coculture experiments with OP9 cells in the presence of erythropoietin revealed a diminished differentiation capacity of Fubp1 KO ESCs into the erythroid lineage. Our data showed that FUBP1 is important for the onset of mesoderm differentiation and maturation of hematopoietic progenitor cells into the erythroid lineage, a finding that is supported by the phenotype of FUBP1-deficient mice.

9.
Bioorg Med Chem ; 24(22): 5717-5729, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27729195

RESUMO

The transcriptional regulator FUSE binding protein 1 (FUBP1) is aberrantly upregulated in various malignancies, fulfilling its oncogenic role by the deregulation of critical genes involved in cell cycle control and apoptosis regulation. Thus, the pharmaceutical inhibition of this protein would represent an encouraging novel targeted chemotherapy. Here, we demonstrate the identification and initial optimization of a pyrazolo[1,5a]pyrimidine-based FUBP1 inhibitor derived from medium throughput screening, which interferes with the binding of FUBP1 to its single stranded target DNA FUSE. We were able to generate a new class of FUBP1 interfering molecules with in vitro and biological activity. In biophysical assays, we could show that our best inhibitor, compound 6, potently inhibits the binding of FUBP1 to the FUSE sequence with an IC50 value of 11.0µM. Furthermore, hepatocellular carcinoma cells exhibited sensitivity towards the treatment with compound 6, resulting in reduced cell expansion and induction of cell death. Finally, we provide insights into the corresponding SAR landscape, leading to a prospective enhancement in potency and cellular efficacy.


Assuntos
DNA Helicases/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Proteínas de Ligação a RNA , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
J Exp Med ; 213(4): 535-53, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26951333

RESUMO

Dietary restriction (DR) improves health, delays tissue aging, and elongates survival in flies and worms. However, studies on laboratory mice and nonhuman primates revealed ambiguous effects of DR on lifespan despite improvements in health parameters. In this study, we analyzed consequences of adult-onset DR (24 h to 1 yr) on hematopoietic stem cell (HSC) function. DR ameliorated HSC aging phenotypes, such as the increase in number of HSCs and the skewing toward myeloid-biased HSCs during aging. Furthermore, DR increased HSC quiescence and improved the maintenance of the repopulation capacity of HSCs during aging. In contrast to these beneficial effects, DR strongly impaired HSC differentiation into lymphoid lineages and particularly inhibited the proliferation of lymphoid progenitors, resulting in decreased production of peripheral B lymphocytes and impaired immune function. The study shows that DR-dependent suppression of growth factors and interleukins mediates these divergent effects caused by DR. Supplementation of insulin-like growth factor 1 partially reverted the DR-induced quiescence of HSCs, whereas IL-6/IL-7 substitutions rescued the impairment of B lymphopoiesis exposed to DR. Together, these findings delineate positive and negative effects of long-term DR on HSC functionality involving distinct stress and growth signaling pathways.


Assuntos
Envelhecimento/imunologia , Restrição Calórica , Diferenciação Celular/imunologia , Senescência Celular/imunologia , Células-Tronco Hematopoéticas/imunologia , Células Progenitoras Linfoides/imunologia , Linfopoese/imunologia , Animais , Células-Tronco Hematopoéticas/citologia , Células Progenitoras Linfoides/citologia , Camundongos , Camundongos Knockout
11.
Cell Rep ; 11(12): 1847-55, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26095368

RESUMO

The ability of hematopoietic stem cells (HSCs) to self-renew is a prerequisite for the establishment of definitive hematopoiesis and life-long blood regeneration. Here, we report the single-stranded DNA-binding transcriptional regulator far upstream element (FUSE)-binding protein 1 (FUBP1) as an essential factor of HSC self-renewal. Functional inactivation of FUBP1 in two different mouse models resulted in embryonic lethal anemia at around E15.5 caused by severely diminished HSCs. Fetal and adult HSCs lacking FUBP1 revealed an HSC-intrinsic defect in their maintenance, expansion, and long-term blood reconstitution, but could differentiate into all hematopoietic lineages. FUBP1-deficient adult HSCs exhibit significant transcriptional changes, including upregulation of the cell-cycle inhibitor p21 and the pro-apoptotic Noxa molecule. These changes caused an increase in generation time and death of HSCs as determined by video-microscopy-based tracking. Our data establish FUBP1 and its recognition of single-stranded genomic DNA as an important element in the transcriptional regulation of HSC self-renewal.


Assuntos
Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Células-Tronco Fetais/citologia , Células-Tronco Fetais/metabolismo , Regulação da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Camundongos , Transdução de Sinais/genética
12.
Stem Cells Transl Med ; 4(7): 702-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934947

RESUMO

UNLABELLED: SummaryGastrointestinal stromal tumors (GISTs) represent 20%-40% of human sarcomas. Although approximately half of GISTs are cured by surgery, prognosis of advanced disease used to be poor due to the high resistance of these tumors to conventional chemo- and radiotherapy. The introduction of molecularly targeted therapy (e.g., with imatinib mesylate) following the discovery of the role of oncogenic mutations in the receptor tyrosine kinases KIT and platelet-derived growth factor α (PDGFRA) significantly increased patient survival. However, GIST cells persist in 95%-97% of imatinib-treated patients who eventually progress and die of the disease because of the emergence of clones with drug-resistant mutations. Because these secondary mutations are highly heterogeneous, even second- and third-line drugs that are effective against certain genotypes have only moderately increased progression-free survival. Consequently, alternative strategies such as targeting molecular mechanisms underlying disease persistence should be considered. We reviewed recently discovered cell-autonomous and microenvironmental mechanisms that could promote the survival of GIST cells in the presence of tyrosine kinase inhibitor therapy. We particularly focused on the potential role of adult precursors for interstitial cells of Cajal (ICCs), the normal counterpart of GISTs. ICC precursors share phenotypic characteristics with cells that emerge in a subset of patients treated with imatinib and in young patients with GIST characterized by loss of succinate dehydrogenase complex proteins and lack of KIT or PDGFRA mutations. Eradication of residual GIST cells and cure of GIST will likely require individualized combinations of several approaches tailored to tumor genotype and phenotype. SIGNIFICANCE: Gastrointestinal stromal tumors (GISTs) are one of the most common connective tissue cancers. Most GISTs that cannot be cured by surgery respond to molecularly targeted therapy (e.g., with imatinib); however, tumor cells persist in almost all patients and eventually acquire drug-resistant mutations. Several mechanisms contribute to the survival of GIST cells in the presence of imatinib, including the activation of "escape" mechanisms and the selection of stem-like cells that are not dependent on the expression of the drug targets for survival. Eradication of residual GIST cells and cure of GIST will likely require individualized combinations of several approaches tailored to the genetic makeup and other characteristics of the tumors.

13.
PLoS One ; 10(5): e0127123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25993328

RESUMO

BACKGROUND: Current pathological diagnostics include the analysis of (epi-)genetic alterations as well as oncogenic pathways. Deregulated mammalian target of rapamycin complex 1 (mTORC1) signaling has been implicated in a variety of cancers including malignant gliomas and is considered a promising target in cancer treatment. Monitoring of mTORC1 activity before and during inhibitor therapy is essential. The aim of our study is to provide a recommendation and report on pitfalls in the use of phospho-specific antibodies against mTORC1-targets phospho-RPS6 (Ser235/236; Ser240/244) and phospho-4EBP1 (Thr37/46) in formalin fixed, paraffin embedded material. METHODS AND FINDINGS: Primary, established cell lines and brain tumor tissue from routine diagnostics were assessed by immunocyto-, immunohistochemistry, immunofluorescent stainings and immunoblotting. For validation of results, immunoblotting experiments were performed. mTORC-pathway activation was pharmacologically inhibited by torin2 and rapamycin. Torin2 treatment led to a strong reduction of signal intensity and frequency of all tested antibodies. In contrast phospho-4EBP1 did not show considerable reduction in staining intensity after rapamycin treatment, while immunocytochemistry with both phospho-RPS6-specific antibodies showed a reduced signal compared to controls. Staining intensity of both phospho-RPS6-specific antibodies did not show considerable decrease in stability in a timeline from 0-230 minutes without tissue fixation, however we observed a strong decrease of staining intensity in phospho-4EBP1 after 30 minutes. Detection of phospho-signals was strongly dependent on tissue size and fixation gradient. mTORC1-signaling was significantly induced in glioblastomas although not restricted to cancer cells but also detectable in non-neoplastic cells. CONCLUSION: Here we provide a recommendation for phospho-specific immunohistochemistry for patient-orientated therapy decisions and monitoring treatment response.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosforilação , Transdução de Sinais
14.
Int J Cancer ; 137(6): 1318-29, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25716227

RESUMO

The ability to escape apoptosis is a hallmark of cancer-initiating cells and a key factor of resistance to oncolytic therapy. Here, we identify FAM96A as a ubiquitous, evolutionarily conserved apoptosome-activating protein and investigate its potential pro-apoptotic tumor suppressor function in gastrointestinal stromal tumors (GISTs). Interaction between FAM96A and apoptotic peptidase activating factor 1 (APAF1) was identified in yeast two-hybrid screen and further studied by deletion mutants, glutathione-S-transferase pull-down, co-immunoprecipitation and immunofluorescence. Effects of FAM96A overexpression and knock-down on apoptosis sensitivity were examined in cancer cells and zebrafish embryos. Expression of FAM96A in GISTs and histogenetically related cells including interstitial cells of Cajal (ICCs), "fibroblast-like cells" (FLCs) and ICC stem cells (ICC-SCs) was investigated by Northern blotting, reverse transcription-polymerase chain reaction, immunohistochemistry and Western immunoblotting. Tumorigenicity of GIST cells and transformed murine ICC-SCs stably transduced to re-express FAM96A was studied by xeno- and allografting into immunocompromised mice. FAM96A was found to bind APAF1 and to enhance the induction of mitochondrial apoptosis. FAM96A protein or mRNA was dramatically reduced or lost in 106 of 108 GIST samples representing three independent patient cohorts. Whereas ICCs, ICC-SCs and FLCs, the presumed normal counterparts of GIST, were found to robustly express FAM96A protein and mRNA, FAM96A expression was much reduced in tumorigenic ICC-SCs. Re-expression of FAM96A in GIST cells and transformed ICC-SCs increased apoptosis sensitivity and diminished tumorigenicity. Our data suggest FAM96A is a novel pro-apoptotic tumor suppressor that is lost during GIST tumorigenesis.


Assuntos
Apoptose/genética , Proteínas de Transporte/genética , Tumores do Estroma Gastrointestinal/genética , Proteínas Supressoras de Tumor/genética , Animais , Fator Apoptótico 1 Ativador de Proteases/genética , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Expressão Gênica/genética , Células HEK293 , Humanos , Células Intersticiais de Cajal/metabolismo , Metaloproteínas , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Mitocôndrias/genética , Peixe-Zebra/genética
15.
Hepatology ; 60(4): 1241-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24824848

RESUMO

UNLABELLED: The far upstream element binding protein (FBP) and the FBP-interacting repressor (FIR) represent molecular tools for transcriptional fine tuning of target genes. Strong overexpression of FBP in human hepatocellular carcinoma (HCC) supports tumor growth and correlates with poor patient prognosis. However, the role of the transcriptional repressor FIR in hepatocarcinogenesis remains poorly delineated. We show that overexpression of FIR correlates with tumor dedifferentiation and tumor cell proliferation in about 60% of primary HCCs. Elevated FIR levels are associated with genomic gains of the FIR gene locus at chromosome 8q24.3 in human HCC specimens. In vitro, nuclear enrichment of FIR supports HCC cell proliferation and migration. Expression profiling of HCC cells after small interfering RNA (siRNA)-mediated silencing of FIR identified the transcription factor DP-1 (TFDP1) as a transcriptional target of FIR. Surprisingly, FIR stimulates the expression of FBP in a TFDP1/E2F1-dependent manner. FIR splice variants lacking or containing exon 2 and/or exon 5 are expressed in the majority of HCCs but not in normal hepatocytes. Specific inhibition of FIR isoforms with and without exon 2 revealed that both groups of FIR splice variants facilitate tumor-supporting effects. This finding was confirmed in xenograft transplantation experiments with lentiviral-infected short hairpin RNA (shRNA) targeting all FIR variants as well as FIR with and without exon 2. CONCLUSION: High-level nuclear FIR does not facilitate repressor properties but supports tumor growth in HCC cells. Thus, the pharmacological inhibition of FIR might represent a promising therapeutic strategy for HCC patients with elevated FIR expression.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Neoplasias Hepáticas/fisiopatologia , Proteínas de Ligação a RNA/fisiologia , Proteínas Repressoras/fisiologia , Animais , Carcinoma Hepatocelular/patologia , DNA Helicases/efeitos dos fármacos , DNA Helicases/genética , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Éxons/genética , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/patologia , Camundongos SCID , Camundongos Transgênicos , Isoformas de Proteínas/genética , Fatores de Processamento de RNA , RNA Interferente Pequeno/farmacologia , Proteínas de Ligação a RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/genética , Fator de Transcrição DP1/fisiologia , Transplante Heterólogo
16.
Circ Res ; 114(9): 1389-97, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24602777

RESUMO

RATIONALE: The human genome harbors a large number of sequences encoding for RNAs that are not translated but control cellular functions by distinct mechanisms. The expression and function of the longer transcripts namely the long noncoding RNAs in the vasculature are largely unknown. OBJECTIVE: Here, we characterized the expression of long noncoding RNAs in human endothelial cells and elucidated the function of the highly expressed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). METHODS AND RESULTS: Endothelial cells of different origin express relative high levels of the conserved long noncoding RNAs MALAT1, taurine upregulated gene 1 (TUG1), maternally expressed 3 (MEG3), linc00657, and linc00493. MALAT1 was significantly increased by hypoxia and controls a phenotypic switch in endothelial cells. Silencing of MALAT1 by small interfering RNAs or GapmeRs induced a promigratory response and increased basal sprouting and migration, whereas proliferation of endothelial cells was inhibited. When angiogenesis was further stimulated by vascular endothelial growth factor, MALAT1 small interfering RNAs induced discontinuous sprouts indicative of defective proliferation of stalk cells. In vivo studies confirmed that genetic ablation of MALAT1 inhibited proliferation of endothelial cells and reduced neonatal retina vascularization. Pharmacological inhibition of MALAT1 by GapmeRs reduced blood flow recovery and capillary density after hindlimb ischemia. Gene expression profiling followed by confirmatory quantitative reverse transcriptase-polymerase chain reaction demonstrated that silencing of MALAT1 impaired the expression of various cell cycle regulators. CONCLUSIONS: Silencing of MALAT1 tips the balance from a proliferative to a migratory endothelial cell phenotype in vitro, and its genetic deletion or pharmacological inhibition reduces vascular growth in vivo.


Assuntos
Células Endoteliais/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , RNA Longo não Codificante/metabolismo , Neovascularização Retiniana/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Interferência de RNA , RNA Longo não Codificante/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/fisiopatologia , Transdução de Sinais , Transfecção
17.
Hepatology ; 59(5): 1886-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24285179

RESUMO

UNLABELLED: Mouse Double Minute homolog 4 (MDM4) gene up-regulation often occurs in human hepatocellular carcinoma (HCC), but the molecular mechanisms responsible for its induction remain poorly understood. Here we investigated the role of the phosphoinositide-3-kinase/v-akt murine thymoma viral oncogene homolog/mammalian target of rapamycin (PI3K/AKT/mTOR) axis in the regulation of MDM4 levels in HCC. The activity of MDM4 and the PI3K/AKT/mTOR pathway was modulated in human HCC cell lines by way of silencing and overexpression experiments. Expression of main pathway components was analyzed in an AKT mouse model and human HCCs. MDM4 inhibition resulted in growth restraint of HCC cell lines both in vitro and in vivo. Inhibition of the PI3K-AKT and/or mTOR pathways lowered MDM4 protein levels in HCC cells and reactivated p53-dependent transcription. Deubiquitination by ubiquitin-specific protease 2a and AKT-mediated phosphorylation protected MDM4 from proteasomal degradation and increased its protein stability. The eukaryotic elongation factor 1A2 (EEF1A2) was identified as an upstream inducer of PI3K supporting MDM4 stabilization. Also, we detected MDM4 protein up-regulation in an AKT mouse model and a strong correlation between the expression of EEF1A2, activated/phosphorylated AKT, and MDM4 in human HCC (each rho > 0.8, P < 0.001). Noticeably, a strong activation of this cascade was associated with shorter patient survival. CONCLUSION: The EEF1A2/PI3K/AKT/mTOR axis promotes the protumorigenic stabilization of the MDM4 protooncogene in human HCC by way of a posttranscriptional mechanism. The activation level of the EEF1A2/PI3K/AKT/mTOR/MDM4 axis significantly influences the survival probability of HCC patients in vivo and may thus represent a promising molecular target.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/fisiologia , Fator 1 de Elongação de Peptídeos/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Idoso , Animais , Carcinoma Hepatocelular/mortalidade , Proteínas de Ciclo Celular , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais/fisiologia
18.
PLoS One ; 8(5): e64873, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717670

RESUMO

Yeast cells can be killed upon expression of pro-apoptotic mammalian proteins. We have established a functional yeast survival screen that was used to isolate novel human anti-apoptotic genes overexpressed in treatment-resistant tumors. The screening of three different cDNA libraries prepared from metastatic melanoma, glioblastomas and leukemic blasts allowed for the identification of many yeast cell death-repressing cDNAs, including 28% of genes that are already known to inhibit apoptosis, 35% of genes upregulated in at least one tumor entity and 16% of genes described as both anti-apoptotic in function and upregulated in tumors. These results confirm the great potential of this screening tool to identify novel anti-apoptotic and tumor-relevant molecules. Three of the isolated candidate genes were further analyzed regarding their anti-apoptotic function in cell culture and their potential as a therapeutic target for molecular therapy. PAICS, an enzyme required for de novo purine biosynthesis, the long non-coding RNA MALAT1 and the MAST2 kinase are overexpressed in certain tumor entities and capable of suppressing apoptosis in human cells. Using a subcutaneous xenograft mouse model, we also demonstrated that glioblastoma tumor growth requires MAST2 expression. An additional advantage of the yeast survival screen is its universal applicability. By using various inducible pro-apoptotic killer proteins and screening the appropriate cDNA library prepared from normal or pathologic tissue of interest, the survival screen can be used to identify apoptosis inhibitors in many different systems.


Assuntos
Apoptose/genética , DNA Complementar/genética , Neoplasias/genética , Oncogenes , Schizosaccharomyces/genética , Sequência de Bases , Western Blotting , Primers do DNA , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Neoplasias/patologia , Reação em Cadeia da Polimerase em Tempo Real
19.
Cancer Res ; 73(3): 1180-9, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23243023

RESUMO

The long noncoding RNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), also known as MALAT-1 or NEAT2 (nuclear-enriched abundant transcript 2), is a highly conserved nuclear noncoding RNA (ncRNA) and a predictive marker for metastasis development in lung cancer. To uncover its functional importance, we developed a MALAT1 knockout model in human lung tumor cells by genomically integrating RNA destabilizing elements using zinc finger nucleases. The achieved 1,000-fold MALAT1 silencing provides a unique loss-of-function model. Proposed mechanisms of action include regulation of splicing or gene expression. In lung cancer, MALAT1 does not alter alternative splicing but actively regulates gene expression including a set of metastasis-associated genes. Consequently, MALAT1-deficient cells are impaired in migration and form fewer tumor nodules in a mouse xenograft. Antisense oligonucleotides (ASO) blocking MALAT1 prevent metastasis formation after tumor implantation. Thus, targeting MALAT1 with ASOs provides a potential therapeutic approach to prevent lung cancer metastasis with this ncRNA serving as both predictive marker and therapeutic target. Finally, regulating gene expression, but not alternative splicing, is the critical function of MALAT1 in lung cancer metastasis. In summary, 10 years after the discovery of the lncRNA MALAT1 as a biomarker for lung cancer metastasis, our loss-of-function model unravels the active function of MALAT1 as a regulator of gene expression governing hallmarks of lung cancer metastasis.


Assuntos
Neoplasias Pulmonares/secundário , RNA Longo não Codificante/fisiologia , Processamento Alternativo , Animais , Linhagem Celular Tumoral , Movimento Celular , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Oligonucleotídeos Antissenso/farmacologia , Fenótipo , RNA Longo não Codificante/antagonistas & inibidores
20.
Cell Metab ; 16(4): 538-49, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22982022

RESUMO

Macromolecular complexes are essential players in numerous biological processes. They are often large, dynamic, and rather labile; approaches to study them are scarce. Covering masses up to ∼30 MDa, we separated the native complexome of rat heart mitochondria by blue-native and large-pore blue-native gel electrophoresis to analyze its constituents by mass spectrometry. Similarities in migration patterns allowed hierarchical clustering into interaction profiles representing a comprehensive analysis of soluble and membrane-bound complexes of an entire organelle. The power of this bottom-up approach was validated with well-characterized mitochondrial multiprotein complexes. TMEM126B was found to comigrate with known assembly factors of mitochondrial complex I, namely CIA30, Ecsit, and Acad9. We propose terming this complex mitochondrial complex I assembly (MCIA) complex. Furthermore, we demonstrate that TMEM126B is required for assembly of complex I. In summary, complexome profiling is a powerful and unbiased technique allowing the identification of previously overlooked components of large multiprotein complexes.


Assuntos
Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteômica , Animais , Bases de Dados de Proteínas , Eletroforese em Gel Bidimensional , Células HEK293 , Humanos , Masculino , Espectrometria de Massas , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Mitocôndrias Cardíacas/metabolismo , Complexos Multiproteicos/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...