Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 47(1): 75-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450896

RESUMO

BACKGROUND: Fatty acids (FA) likely affect human fertility at multiple levels, as deviations from physiological FA profiles are obesogenic, and FA can modify DNA methylation (DNAm). Yet, the interplay of follicular fluid (FF) and serum FA with BMI and percentage body fat (PBF) in human fertility is not completely understood. Also, associations of DNAm with fertility are largely unexplored. METHODS: Reproductive parameters ranging from retrieved oocyte number to infant birth weight, were recorded in Mexican women undergoing in vitro fertilization (n = 88). Multiple regression analysis sought BMI-adjusted and age-adjusted associations. Receiver operating characteristic analysis tested for discrimination between outcomes. RESULTS: Associations of FF and serum FA were markedly distinct. While various FF FA (C16:1, C18:0, C20:2, C20:3, arachidonic acid) were significantly and inversely associated only with retrieved oocyte number, selected serum FA were associated with a broad range of pre-fertilization and post-fertilization parameters. Associations of BMI and FF FA were complex, as arachidonic acid was inversely associated with both BMI and retrieved oocyte number, while oleic acid (OA) was directly associated with BMI and PBF. Ultrasound-assessed clinical pregnancy outcome (CP) was directly associated with serum OA but inversely with its trans isomer elaidic acid (EA) and with BMI. Compounded BMI, serum EA and OA discriminated CP well (AUC = 0.74). Whole blood DNA methylation was significantly associated with and a moderate predictor (AUC = 0.66) of percent fertilized oocytes. CONCLUSIONS: Overall FF FA pool composition rather than FA identity may impact oocyte production and cellular memory of FF FA is lost as the oocyte exits the follicular environment. The contrasting associations of BMI, FF OA and arachidonic acid suggest that the control of oocyte homeostasis by FF FA is uncoupled from BMI. Further studies are warranted to assess the potential of compounding BMI with serum EA and OA to predict CP.


Assuntos
Metilação de DNA , Ácidos Graxos , Gravidez , Humanos , Feminino , Fertilização in vitro , Fertilidade , Ácidos Araquidônicos
2.
Bioelectromagnetics ; 43(4): 225-244, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35437793

RESUMO

Homogeneous extremely low-frequency electromagnetic fields (ELF-EMFs) alter biological phenomena, including the cell phenotype and proliferation rate. Heterogenous vortex magnetic fields (VMFs), a new approach of exposure to magnetic fields, induce systematic movements on charged biomolecules from target cells; however, the effect of VMFs on living systems remains uncertain. Here, we designed, constructed, and characterized an ELF-VMF-modified Rodin's coil to expose SH-SY5Y cells. Samples were analyzed by performing 2D-differential-gel electrophoresis, identified by MALDI-TOF/TOF, validated by western blotting, and characterized by confocal microscopy. A total of 106 protein spots were differentially expressed; 40 spots were downregulated and 66 were upregulated in the exposed cell proteome, compared to the control cell proteome. The identified spots are associated with cytoskeleton and cell viability proteins, and according to the protein-protein interaction network, a significant interaction among them was found. Our data revealed a decrease in cell survival associated with apoptotic cells without effects on the cell cycle, as well as evident changes in the cytoskeleton. We demonstrated that ELF-VMFs, at a specific frequency and exposure time, alter the cell proteome and structurally affect the target cells. This is the first report showing that VMF application might be a versatile system for testing different hypotheses in living systems, using appropriate exposure parameters.© 2022 Bioelectromagnetics Society.


Assuntos
Neuroblastoma , Proteoma , Apoptose , Linhagem Celular , Citoesqueleto , Campos Eletromagnéticos , Humanos , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...