Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 122: 104649, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218017

RESUMO

Modern 3D printing of implantable devices provides an important opportunity for the development of personalized implants with good anatomical fit. Nevertheless, 3D printing of silicone has been challenging and the recent advances in technology are provided by the systems which can print medical grade silicone via extrusion. However, the potential impacts of the 3D printing process of silicone on its biomechanical properties has not been studied in sufficient detail. Therefore, the present study compares 3D printed and moulded silicone structures for their cytotoxicity, surface roughness, biomechanical properties, and in vivo tissue reaction. The 3D printing process creates increased nanoscale roughness and noticeably changes microscale topography. Neither the presence of these features nor the differences in processes were found to result in an increase in cytotoxicity or tissue reaction for 3D printed structures, exhibiting limited inflammatory reaction and cell viability above the threshold values. On the contrary, the biomechanical properties have demonstrated significant differences in static and dynamic conditions, and in thermal expansion. Our results demonstrate that 3D printing can be used for establishing a better biomechanical microenvironment for the surrounding tissue of the implant particularly for fragile soft tissue like epithelial mucosa without having any negative effect on the cytotoxicity or in vivo reaction to silicone. For engineering of the implants, however, one must consider the differences in mechanical properties to result in correct and personalized geometry and proper physical interaction with tissues.


Assuntos
Impressão Tridimensional , Silicones , Próteses e Implantes
2.
Materials (Basel) ; 14(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477782

RESUMO

Prevention of bacterial inflammation around dental implants (peri-implantitis) is one of the keys to success of the implantation and can be achieved by securing the gingival tissue-abutment interface preventing penetration of bacteria. Modern dental practice has adopted zirconia abutments in place of titanium, but the adhesion of gingival tissue to zirconia is inferior to titanium. The aim of this study was to assess and improve the adhesion of mucosal tissues to zirconia posts using sol-gel derived TiO2 coating following dynamic mechanical testing. The posts were cultivated with porcine bone-gingival tissue specimens in vitro for 7 and 14 days and then subjected to dynamic mechanical analysis simulating physiological loading at 1 Hz up to 50 µm amplitude. In parallel in silico analysis of stresses and strains have been made simulating "the worst case" when the fixture fails in osseointegration while the abutment still holds. Results show treatment of zirconia can lead to double interface stiffness (static shear stiffness values from 5-10 to 17-23 kPa and dynamic from 20-50 to 60-125 kPa), invariant viscostiffness (from 5-35 to 45-90 kPa·sα) and material memory values (increased from 0.06-0.10 to 0.17-0.25), which is beneficial in preventing bacterial contamination in dental implants. This suggests TiO2-coated zirconia abutments may have a significant clinical benefit for prevention of the bacterial contamination.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30560126

RESUMO

Scaffolds for articular cartilage repair have to be optimally biodegradable with simultaneous promotion of hyaline cartilage formation under rather complex biomechanical and physiological conditions. It has been generally accepted that scaffold structure and composition would be the best when it mimics the structure of native cartilage. However, a reparative construct mimicking the mature native tissue in a healing tissue site presents a biological mismatch of reparative stimuli. In this work, we studied a new recombinant human type III collagen-polylactide (rhCol-PLA) scaffolds. The rhCol-PLA scaffolds were assessed for their relative performance in simulated synovial fluids of 1 and 4 mg/mL sodium hyaluronate with application of model-free analysis with Biomaterials Enhanced Simulation Test (BEST). Pure PLA scaffold was used as a control. The BEST results were compared to the results of a prior in vivo study with rhCol-PLA. Collectively the data indicated that a successful articular cartilage repair require lower stiffness of the scaffold compared to surrounding cartilage yet matching the strain compliance both in static and dynamic conditions. This ensures an optimal combination of load transfer and effective oscillatory nutrients supply to the cells. The results encourage further development of intelligent scaffold structures for optimal articular cartilage repair rather than simply trying to imitate the respective original tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...