RESUMO
INTRODUCTION: A giant left atrium may cause respiratory dysfunction and hemodynamic disturbance postoperatively. This retrospective study aimed to evaluate clinical effects of surgical left atrial reduction in concomitant cardiac valves operations. METHODS: One hundred and thirty-five patients with heart valve diseases and giant left atriums from January 2004 to July 2021 were enrolled into this research. They were divided into the folded group (n=63) and the unfolded group (n=72). Patients in the folded group had undergone cardiac valve operations concomitantly with left atrial reductions. The perioperative characteristics were compared between both groups, and subgroup analysis was performed. RESULTS: There were five deaths in the folded group and 25 deaths in the unfolded group (P<0.001). Complications including pneumonia, sepsis, multiple organs dysfunction syndrome, low cardiac output syndrome, and the use of continuous renal replacement therapy were significantly fewer in the folded group. The receiver operating characteristic curve of left atrial max. diameter predicting mortality was significant (area under the curve=0.878, P=0.005), and the cutoff point was 96.5 mm. The stratified analysis for sex showed that more female patients died in the unfolded group. Logistic regression for mortality showed that the left atrium unfolded, left atrial max. diameter, cardiopulmonary bypass time, and mechanical ventilation time increased the risk of death. CONCLUSION: Surgical left atrial reduction concomitantly with valves replacement could decrease mortality and was safe and effective in giant left atrium patients.
Assuntos
Fibrilação Atrial , Doenças das Valvas Cardíacas , Implante de Prótese de Valva Cardíaca , Humanos , Feminino , Valva Mitral/cirurgia , Fibrilação Atrial/cirurgia , Estudos Retrospectivos , Átrios do Coração/cirurgia , Doenças das Valvas Cardíacas/cirurgia , Cardiomegalia/cirurgiaRESUMO
ABSTRACT Introduction: A giant left atrium may cause respiratory dysfunction and hemodynamic disturbance postoperatively. This retrospective study aimed to evaluate clinical effects of surgical left atrial reduction in concomitant cardiac valves operations. Methods: One hundred and thirty-five patients with heart valve diseases and giant left atriums from January 2004 to July 2021 were enrolled into this research. They were divided into the folded group (n=63) and the unfolded group (n=72). Patients in the folded group had undergone cardiac valve operations concomitantly with left atrial reductions. The perioperative characteristics were compared between both groups, and subgroup analysis was performed. Results: There were five deaths in the folded group and 25 deaths in the unfolded group (P<0.001). Complications including pneumonia, sepsis, multiple organs dysfunction syndrome, low cardiac output syndrome, and the use of continuous renal replacement therapy were significantly fewer in the folded group. The receiver operating characteristic curve of left atrial max. diameter predicting mortality was significant (area under the curve=0.878, P=0.005), and the cutoff point was 96.5 mm. The stratified analysis for sex showed that more female patients died in the unfolded group. Logistic regression for mortality showed that the left atrium unfolded, left atrial max. diameter, cardiopulmonary bypass time, and mechanical ventilation time increased the risk of death. Conclusion: Surgical left atrial reduction concomitantly with valves replacement could decrease mortality and was safe and effective in giant left atrium patients.
RESUMO
Vascular hypo-responsiveness to vasopressors in patients with obstructive jaundice (OJ) is a common anesthetic event, which leads to perioperative complications and increased mortality. The cause of this clinical issue remains unclear. In this study, we estimated the actin cytoskeleton and arterial protein level in the artery of OJ patients by proteomic analysis. Ten patients with OJ due to bile duct diseases or pancreatic head carcinoma were enrolled, while another ten non-jaundice patients with chronic cholecystitis or liver hemangioma as the control group. Vascular reactivity to noradrenaline was measured before anesthesia on the day of surgery. Artery samples in adjacent tissues of removed tumor were collected and evaluated by 2-dimensional electrophoresis. Proteins with differential expression were detected by MALDI-TOF mass spectrometry with immunoblot confirmation. The results confirmed the phenomenon of vascular hypo-reactivity in OJ patients as suppressed aortic response to noradrenaline were existed in these patients. We also found that actin cytoskeleton and several actin-binding proteins were up- or down-regulated in the artery of OJ patients. These proteins changed in OJ patents might be the basic mechanism of vascular hypo-reactivity, further studies to uncover the role of these proteins in OJ is critical for clinical treatment of these patients.
RESUMO
BACKGROUND: Breast cancer is the second common malignant cancer among females worldwide. Accumulating studies have indicated that deregulation of miRNA expression in breast cancer will contribute to tumorigenesis and form different cancer subtypes. However, the reported studies on miR-29b-3p-regulated breast cancer are limited so far. Herein, we investigated the role and mechanism of miR-29b-3p in the triple negative breast cancer cell line MDA-MB-231. METHODS: The relative miR-29b-3p expression in different breast cancer cell lines were determined by qRT-PCR. CCK8 and colony formation assay were used to determine the influence of miR-29b-3p on cell proliferation. Migration assay and invasion assay were performed for cell migration and invasion respectively. To study the cell integrity immunofluorescence was performed. TUNEL assay, flow cytometry assay, hoechst staining and western blot were conducted to determine the influence of miR-29b-3p inhibitor on cell apoptosis. TRAF3 was found to be the target gene of miR-29b-3p using bioinformatics predictions. Dual-luciferase assay was performed to determine the relative luciferase activity in NC, miR-29b-3p mimic, miR-29b-3p inhibitor with TRAF3 3'-UTR wt or TRAF3 3'-UTR mt reporter plasmids. The proteins expression of NF-κB signaling pathway in MDA-MB-231 after transfection with NC, miR-29b-3p mimic, miR-29b-3p inhibitor were determined by western blot. RESULTS: The miR-29b-3p expression was significantly increased in MDA-MB-231 compare with MCF-10A. miR-29b-3p inhibitor reduced the cell viability of MDA-MB-231 and inhibited cell migration and invasion. Cell cytoskeleton integrity destroyed after miR-29b-3p inhibitor treatment. Furthermore, we identified the mechanism and found miR-29b-3p targets the TRAF3 and activates NF-κB signaling pathway. CONCLUSIONS: From the above studies, our results indicated that miR-29b-3p acts as a promoter for the development of MDA-MB-231.
Assuntos
Apoptose/efeitos dos fármacos , Regulação para Baixo/genética , MicroRNAs/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Luciferases/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
BACKGROUND: Breast cancer is the second common malignant cancer among females worldwide. Accumulating studies have indicated that deregulation of miRNA expression in breast cancer will contribute to tumorigenesis and form different cancer subtypes. However, the reported studies on miR-29b-3p-regulated breast cancer are limited so far. Herein, we investigated the role and mechanism of miR-29b-3p in the triple negative breast cancer cell line MDA-MB-231. METHODS: The relative miR-29b-3p expression in different breast cancer cell lines were determined by qRT-PCR. CCK8 and colony formation assay were used to determine the influence of miR-29b-3p on cell proliferation. Migration assay and invasion assay were performed for cell migration and invasion respectively. To study the cell integrity immunofluorescence was performed. TUNEL assay, flow cytometry assay, hoechst staining and western blot were conducted to determine the influence of miR-29b-3p inhibitor on cell apoptosis. TRAF3 was found to be the target gene of miR-29b-3p using bioinformatics predictions. Dual-luciferase assay was performed to determine the relative luciferase activity in NC, miR-29b-3p mimic, miR-29b-3p inhibitor with TRAF3 3'-UTR wt or TRAF3 3'-UTR mt reporter plasmids. The proteins expression of NF-κB signaling pathway in MDA-MB-231 after transfection with NC, miR-29b-3p mimic, miR-29b-3p inhibitor were determined by western blot. RESULTS: The miR-29b-3p expression was significantly increased in MDA-MB-231 compare with MCF-10A. miR-29b-3p inhibitor reduced the cell viability of MDA-MB-231 and inhibited cell migration and invasion. Cell cytoskeleton integrity destroyed after miR-29b-3p inhibitor treatment. Furthermore, we identified the mechanism and found miR-29b-3p targets the TRAF3 and activates NF-κB signaling pathway. CONCLUSIONS: From the above studies, our results indicated that miR-29b-3p acts as a promoter for the development of MDA-MB-231.
Assuntos
Humanos , Feminino , Regulação para Baixo/genética , Apoptose/efeitos dos fármacos , MicroRNAs/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Western Blotting , Linhagem Celular Tumoral , Fator 3 Associado a Receptor de TNF/genética , Proliferação de Células , Neoplasias de Mama Triplo Negativas/patologia , Luciferases/metabolismoRESUMO
The aggregations of tau protein in brain tissue have been described in a large number of neurodegenerative diseases; however, due to the lack of tau isoform- or exon-specific antibodies, the exact situations under which various brain tau isoforms can be found and their exact contributions during disease progression remain unknown. Therefore, in this study, we prepared tau exon-specific monoclonal antibodies (mAbs) that recognize different mammalian tau isoforms. Briefly, 3 Balb/c mice were separately immunized (3 mice per antigen) with the recombinant GST-fusion proteins, GST-tE2 and GST-tE10. Two hybridoma cell lines, 4A8 and 3E12, secreting antibodies against human tau exon-2 and -10 were established using the hybridoma technique. The sensitivity and specificity of the prepared mAbs were evaluated using indirect ELISA and western blot analysis. The ability of the prepared mAbs, 4A8 and 3E12, to recognize endogenous tau protein in the brain tissues of various mammals was estimated by immunoprecipitation. Based on the results of various verification methods, we found that the prepared mAbs, 4A8 and 3E12, not only specifically reacted with the individual recombinant GST tau exon fusion proteins, but also correctly recognized the recombinant human tau isoforms containing respective exon sequences, as shown by western blot analysis. Furthermore, western blot analysis and immunoprecipitation assays verified that the mAbs, 4A8 and 3E12, recognized endogenous tau proteins in human brain tissue, as well as tau proteins in a series of mammalian tissues, including goat, bovine, rabbit, hamster and mouse. Thus, in the present study, using the hybridoma technique, we successfully prepared the mAbs, 4A8 against tau exon-2 and 3E12 against tau exon-10, which provide useful tools for determining potential alternations of tau isoforms in neurodegenerative diseases.