Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Biomacromolecules ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213520

RESUMO

Here, we report novel cholinized-polymer functionalized lipid-based nanoparticles (CP-LNPs) for rapid and highly effective delivery of drugs to the liver, achieving targeting within 10 min and nearly 100% efficiency. In this study, CP-LNPs loaded with a promising antifibrotic agent curcumin (CP-LNPs/Cur) significantly improved the stability of curcumin under physiological conditions and its distribution in the liver. In vitro experiments demonstrated that CP-LNPs/Cur effectively suppressed the proliferation and migration of activated hepatic stellate cells (aHSCs), as evidenced by the decreased expression of α-SMA. Moreover, CP-LNPs/Cur attenuated oxidative stress levels in hepatocytes while improving mitochondrial physiological activity. In vivo antifibrosis studies have shown that CP-LNPs/Cur only require a low dose to significantly alleviate liver injury and collagen deposition, thereby preventing the progression of liver fibrosis. These findings indicated that CP-LNPs exhibit great potential in liver fibrosis therapy benefiting from the novel targeting strategy.

3.
Sci Transl Med ; 16(758): eadg7915, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083585

RESUMO

Richter's transformation (RT) is a progression of chronic lymphocytic leukemia (CLL) to aggressive lymphoma. MGA (Max gene associated), a functional MYC suppressor, is mutated at 3% in CLL and 36% in RT. However, genetic models and molecular mechanisms of MGA deletion that drive CLL to RT remain elusive. We established an RT mouse model by knockout of Mga in the Sf3b1/Mdr CLL model using CRISPR-Cas9 to determine the role of Mga in RT. Murine RT cells exhibited mitochondrial aberrations with elevated oxidative phosphorylation (OXPHOS). Through RNA sequencing and functional characterization, we identified Nme1 (nucleoside diphosphate kinase) as an Mga target, which drives RT by modulating OXPHOS. Given that NME1 is also a known MYC target without targetable compounds, we found that concurrent inhibition of MYC and electron transport chain complex II substantially prolongs the survival of RT mice in vivo. Our results suggest that the Mga-Nme1 axis drives murine CLL-to-RT transition via modulating OXPHOS, highlighting a potential therapeutic avenue for RT.


Assuntos
Leucemia Linfocítica Crônica de Células B , Mitocôndrias , Fosforilação Oxidativa , Animais , Mitocôndrias/metabolismo , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Camundongos , Deleção de Genes , Humanos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Modelos Animais de Doenças
4.
Environ Int ; 190: 108831, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936065

RESUMO

Antibiotic resistance in soil introduced by organic fertilizer application pose a globally recognized threat to human health. Insect organic fertilizer may be a promising alternative due to its low antibiotic resistance. However, it is not yet clear how to regulate soil microbes to reduce antibiotic resistance in organic fertilizer agricultural application. In this study, we investigated soil microbes and antibiotic resistome under black soldier fly organic fertilizer (BOF) application in pot and field systems. Our study shows that BOF could stimulate ARB (antibiotic resistant - bacteria) - suppressive Bacillaceae in the soil microbiome and reduce antibiotic resistome. The carbohydrate transport and metabolism pathway of soil Bacillaceae was strengthened, which accelerated the synthesis and transport of polysaccharides to form biofilm to antagonistic soil ARB, and thus reduced the antibiotic resistance. We further tested the ARB - suppressive Bacillus spp. in a microcosm assay, which resulted in a significant decrease in the presence of ARGs and ARB together with higher abundance in key biofilm formation gene (epsA). This knowledge might help to the development of more efficient bio-fertilizers aimed at mitigating soil antibiotic resistance and enhancing soil health, in particular, under the requirements of global "One Health".


Assuntos
Bacillus , Biofilmes , Fertilizantes , Microbiologia do Solo , Biofilmes/efeitos dos fármacos , Animais , Bacillus/fisiologia , Bacillus/genética , Solo/química , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Agricultura/métodos , Microbiota/efeitos dos fármacos
5.
BMC Med Imaging ; 24(1): 146, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872133

RESUMO

BACKGROUND: The incidence of placenta accreta spectrum (PAS) increases in women with placenta previa (PP). Many radiologists sometimes cannot completely and accurately diagnose PAS through the simple visual feature analysis of images, which can affect later treatment decisions. The study is to develop a T2WI MRI-based radiomics-clinical nomogram and evaluate its performance for non-invasive prediction of suspicious PAS in patients with PP. METHODS: The preoperative MR images and related clinical data of 371 patients with PP were retrospectively collected from our hospital, and the intraoperative examination results were used as the reference standard of the PAS. Radiomics features were extracted from sagittal T2WI MR images and further selected by LASSO regression analysis. The radiomics score (Radscore) was calculated with logistic regression (LR) classifier. A nomogram integrating Radscore and selected clinical factors was also developed. The model performance was assessed with respect to discrimination, calibration and clinical usefulness. RESULTS: A total of 6 radiomics features and 1 clinical factor were selected for model construction. The Radscore was significantly associated with suspicious PAS in both the training (p < 0.001) and validation (p < 0.001) datasets. The AUC of the nomogram was also higher than that of the Radscore in the training dataset (0.891 vs. 0.803, p < 0.001) and validation dataset (0.897 vs. 0.780, p < 0.001), respectively. The calibration was good, and the decision curve analysis demonstrated the nomogram had higher net benefit than the Radscore. CONCLUSIONS: The T2WI MRI-based radiomics-clinical nomogram showed favorable diagnostic performance for predicting PAS in patients with PP, which could potentially facilitate the obstetricians for making clinical decisions.


Assuntos
Imageamento por Ressonância Magnética , Nomogramas , Placenta Acreta , Placenta Prévia , Humanos , Feminino , Placenta Acreta/diagnóstico por imagem , Gravidez , Placenta Prévia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Estudos Retrospectivos , Radiômica
6.
Adv Mater ; 36(29): e2313570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38693828

RESUMO

Ternary copper (Cu) halides are promising candidates for replacing toxic lead halides in the field of perovskite light-emitting diodes (LEDs) toward practical applications. However, the electroluminescent performance of Cu halide-based LEDs remains a great challenge due to the presence of serious nonradiative recombination and inefficient charge transport in Cu halide emitters. Here, the rational design of host-guest [dppb]2Cu2I2 (dppb denotes 1,2-bis[diphenylphosphino]benzene) emitters and its utility in fabricating efficient Cu halide-based green LEDs that show a high external quantum efficiency (EQE) of 13.39% are reported. The host-guest [dppb]2Cu2I2 emitters with mCP (1,3-bis(N-carbazolyl)benzene) host demonstrate a significant improvement of carrier radiative recombination efficiency, with the photoluminescence quantum yield increased by nearly ten times, which is rooted in the efficient energy transfer and type-I energy level alignment between [dppb]2Cu2I2 and mCP. Moreover, the charge-transporting mCP host can raise the carrier mobility of [dppb]2Cu2I2 films, thereby enhancing the charge transport and recombination. More importantly, this strategy enables a large-area prototype LED with a record-breaking area up to 81 cm2, along with a decent EQE of 10.02% and uniform luminance. It is believed these results represent an encouraging stepping stone to bring Cu halide-based LEDs from the laboratory toward commercial lighting and display panels.

7.
Eur Radiol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730032

RESUMO

OBJECTIVES: To evaluate the intracranial structures and brain parenchyma radiomics surrounding the occipital horn of the lateral ventricle in normal fetuses (NFs) and fetuses with ventriculomegaly (FVs), as well as to predict postnatally enlarged lateral ventricle alterations in FVs. METHODS: Between January 2014 and August 2023, 141 NFs and 101 FVs underwent 1.5 T balanced steady-state free precession (BSSFP), including 68 FVs with resolved lateral ventricles (FVM-resolved) and 33 FVs with stable lateral ventricles (FVM-stable). Demographic data and intracranial structures were analyzed. To predict the enlarged ventricle alterations of FVs postnatally, logistic regression models with 5-fold cross-validation were developed based on lateral ventricle morphology, blended-cortical or/and subcortical radiomics characteristics. Validation of the models' performance was conducted using the receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). RESULTS: Significant alterations in cerebral structures were observed between NFs and FVs (p < 0.05), excluding the maximum frontal horn diameter (FD). However, there was no notable distinction between the FVM-resolved and FVM-stable groups (all p > 0.05). Based on subcortical-radiomics on the aberrant sides of FVs, this approach exhibited high efficacy in distinguishing NFs from FVs in the training/validation set, yielding an impressive AUC of 1/0.992. With an AUC value of 0.822/0.743 in the training/validation set, the Subcortical-radiomics model demonstrated its ability to predict lateral ventricle alterations in FVs, which had the greatest predictive advantages indicated by DCA. CONCLUSIONS: Microstructural alterations in subcortical parenchyma associated with ventriculomegaly can serve as predictive indicators for postnatal lateral ventricle variations in FVs. CLINICAL RELEVANCE STATEMENT: It is critical to gain pertinent information from a solitary fetal MRI to anticipate postnatal lateral ventricle alterations in fetuses with ventriculomegaly. This approach holds the potential to diminish the necessity for recurrent prenatal ultrasound or MRI examinations. KEY POINTS: Fetal ventriculomegaly is a dynamic condition that affects postnatal neurodevelopment. Machine learning and subcortical-radiomics can predict postnatal alterations in the lateral ventricle. Machine learning, applied to single-fetal MRI, might reduce required antenatal testing.

8.
Environ Sci Pollut Res Int ; 31(20): 30112-30125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602637

RESUMO

People are increasingly using black soldier fly larvae (BSFL) as a sustainable waste management solution. They are high in protein and other essential nutrients, making them an ideal food source for livestock, poultry, and fish. Prior laboratory studies with BSFL developed on pure mushroom root waste (MRW) showed poor conversion efficiency compared to a regular artificial diet. Therefore, we mixed the nutrient-rich soybean curd residues (SCR) with MRW in different ratios (M2-M5). Pure mushroom root waste (M1, MRW 100%) had the lowest survival rate (86.2%), but it increased up to 96.9% with the SCR percentage increasing. M1 had the longest developmental period (31.1 days) and the lowest BSFL weight (7.4 g). However, the addition of SCR reduced the development time to 22.0 and 21.5 days in M4 (MRW 40%, SCR 60%) and M5 (MRW 20%, SCR 80%), respectively, and improved the larval weight to 10.9 g in M4 and 11.8 g in M5. Other groups did not have as much feed conversion ratio (FCR) (8.4 for M4 and M5), bioconversion (M4 5.4%; M5 5.9%), or lipid content (M4 25.2%; M5 24.3%). These mixtures did. Compare this to M1. We observed better results, with no significant differences between the M4 and M5 groups and their parameters. In the present study, our main target was to utilize more MRW. Therefore, we preferred the M4 group in our nutritional and safety investigation and further compared it with the artificial diet (M7). The heavy metals and essential amino acids (histidine 3.6%, methionine 2.7%, and threonine 3.8%) required for human consumption compared to WHO/FAO levels showed satisfactory levels. Furthermore, fatty acids (capric acid 1.9%, palmitic acid 15.3%, oleic acid 17.3%, and arachidonic acid 0.3%) also showed higher levels in M4 than M7. The SEM images and FT-IR spectra from the residues showed that the BSFL in group M4 changed the structure of the compact fiber to crack and remove fibers, which made the co-conversion mixture better.


Assuntos
Biomassa , Glycine max , Larva , Animais , Agaricales , Dípteros
9.
Nano Lett ; 24(12): 3719-3726, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38484387

RESUMO

Mixed-halide CsPb(Br/I)3 perovskite quantum dots (QDs) are regarded as one of the most promising candidates for pure-red perovskite light-emitting diodes (PeLEDs) due to their precise spectral tuning property. However, the lead-rich surface of these QDs usually results in halide ion migration and nonradiative recombination loss, which remains a great challenge for high-performance PeLEDs. To solve the above issues, we employ a chelating agent of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid hydrate (DOTA) to polish the lead-rich surface of the QDs and meanwhile introduce a new ligand of 2,3-dimercaptosuccinic acid (DMSA) to passivate surface defects of the QDs. This synchronous post-treatment strategy results in high-quality CsPb(Br/I)3 QDs with suppressed halide ion migration and an improved photoluminescence quantum yield, which enables us to fabricate spectrally stable pure-red PeLEDs with a peak external quantum efficiency of 23.2%, representing one of the best performance pure-red PeLEDs based on mixed-halide CsPb(Br/I)3 QDs reported to date.

10.
Adv Mater ; 36(21): e2312482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38380797

RESUMO

Near-Infrared (NIR) light emitting metal halides are emerging as a new generation of optical materials owing to their appealing features, which include low-cost synthesis, solution processability, and adjustable optical properties. NIR-emitting perovskite-based light-emitting diodes (LEDs) have reached an external quantum efficiency (EQE) of over 20% and a device stability of over 10,000 h. Such results have sparked an interest in exploring new NIR metal halide emitters. In this review, several different types of NIR-emitting metal halides, including lead/tin bromide/iodide perovskites, lanthanide ions doped/based metal halides, double perovskites, low dimensional hybrid and Bi3+/Sb3+/Cr3+ doped metal halides, are summarized, and their recent advancement is assessed. The characteristics and mechanisms of narrow-band or broadband NIR luminescence in all these materials are discussed in detail. Also, the various applications of NIR-emitting metal halides are highlighted and an outlook for the field is provided.

11.
Neuroradiology ; 66(5): 797-807, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38383677

RESUMO

PURPOSE: We aimed to determine the feasibility of using DKI to characterize pathological changes in nonarteritic anterior ischemic optic neuropathy (NAION) and to differentiate it from acute optic neuritis (ON). METHODS: Orbital DKI was performed with a 3.0 T scanner on 75 patients (51 with NAION and 24 with acute ON) and 15 healthy controls. NAION patients were further divided into early and late groups. The mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were calculated to perform quantitative analyses among groups; and receiver operating characteristic curve analyses were also performed to determine their effectiveness of differential diagnosis. In addition, correlation coefficients were calculated to explore the correlations of the DKI-derived data with duration of disease. RESULTS: The MK, RK, and AK in the affected nerves with NAION were significantly higher than those in the controls, while the trend of FA, RD, and AD was a decline; in acute ON patients, except for RD, which increased, all DKI-derived kurtosis and diffusion parameters were significantly lower than controls (all P < 0.008). Only AK and MD had statistical differences between the early and late groups. Except for MD (early group) and FA, all other DKI-derived parameters were higher in NAION than in acute ON; and parameters in the early group showed better diagnostic efficacy in differentiating NAION from acute ON. Correlation analysis showed that time was negatively correlated with MK, RK, AK, and FA and positively correlated with MD, RD, and AD (all P < 0.05). CONCLUSION: DKI is helpful for assessing the specific pathologic abnormalities resulting from ischemia in NAION by comparison with acute ON. Early DKI should be performed to aid in the diagnosis and evaluation of NAION.


Assuntos
Neurite Óptica , Neuropatia Óptica Isquêmica , Humanos , Neuropatia Óptica Isquêmica/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Neurite Óptica/diagnóstico por imagem , Curva ROC
12.
Ecotoxicol Environ Saf ; 270: 115861, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154153

RESUMO

As agents in an emerging technology, Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae) larvae, black soldier fly, have shown exciting potential for degrading antibiotics in organic solid waste, a process for which gut microorganisms play an important role. This study investigated the characteristics of larval gut bacterial communities effected by typical antibiotics. Initially, antibiotics significantly reduced the diversity of gut bacterial species. After 8 days, diversity recovered to similar to that of the control group in the chlortetracycline, tylosin, and sulfamethoxazole groups. Proteobacteria, Firmicutes, and Actinobacteriota were the dominant phyla at the initial BSFL gut. However, after 4 days treatment, the proportion of Actinobacteriota significantly decreased, but Bacteroidota notably increased. During the conversion process, 18, 18, 17, 21, and 19 core genera were present in the chlortetracycline, sulfamethoxazole, tylosin, norfloxacin, and gentamicin groups, respectively. Pseudomonas, Actinomyces, Morganella, Providencia and Klebsiella might be the important genera with extraordinary resistance and degradation to antibiotics. Statistical analyses of COGs showed that antibiotics changed the microbial community functions of BSFL gut. Compared with the control group, (i) the chlortetracycline, sulfamethoxazole, and tylosin groups showed significant increase in the classification functions of transcription, RNA processing and modification,and so on, (ii) the norfloxacin and gentamicin groups showed significant increase in defense mechanisms and other functions. Note that we categorized the response mechanisms of these classification functions to antibiotics into resistance and degradation. This provides a new perspective to deeply understand the joint biodegradation behavior of antibiotics in environments, and serves as an important reference for further development and utilization of microorganisms-assisted larvae for efficient degradation of antibiotics.


Assuntos
Clortetraciclina , Dípteros , Microbioma Gastrointestinal , Animais , Dípteros/fisiologia , Larva , Antibacterianos/farmacologia , Norfloxacino , Tilosina , Bactérias , Sulfametoxazol , Gentamicinas
13.
Ecotoxicol Environ Saf ; 266: 115551, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832484

RESUMO

The increasing prevalence of antibiotic-resistant bacteria (ARB) from animal manure has raised concerns about the potential threats to public health. The bioconversion of animal manure with insect larvae, such as the black soldier fly larvae (BSFL, Hermetia illucens [L.]), is a promising technology for quickly attenuating ARB while also recycling waste. In this study, we investigated BSFL conversion systems for chicken manure. Using metagenomic analysis, we tracked ARB and evaluated the resistome dissemination risk by investigating the co-occurrence of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial taxa in a genetic context. Our results indicated that BSFL treatment effectively mitigated the relative abundance of ARB, ARGs, and MGEs by 34.9%, 53.3%, and 37.9%, respectively, within 28 days. Notably, the transferable ARGs decreased by 30.9%, indicating that BSFL treatment could mitigate the likelihood of ARG horizontal transfer and thus reduce the risk of ARB occurrence. In addition, the significantly positive correlation links between antimicrobial concentration and relative abundance of ARB reduced by 44.4%. Moreover, using variance partition analysis (VPA), we identified other bacteria as the most important factor influencing ARB, explaining 20.6% of the ARB patterns. Further analysis suggested that antagonism of other bacteria on ARB increased by 1.4 times, while nutrient competition on both total nitrogen and crude fat increased by 2.8 times. Overall, these findings provide insight into the mechanistic understanding of ARB reduction during BSFL treatment of chicken manure and provide a strategy for rapidly mitigating ARB in animal manure.


Assuntos
Dípteros , Esterco , Animais , Larva/genética , Esterco/análise , Galinhas/genética , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Dípteros/genética , Bactérias , Resistência Microbiana a Medicamentos , Genes Bacterianos , Antibacterianos/farmacologia
14.
Res Vet Sci ; 165: 105053, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856945

RESUMO

Circular RNAs (circRNAs) have a regulatory role in gene expression, development, differentiation, and immune response. In a previous study, circular RNA STX8 (circSTX8) exhibited low expression in chicken lungs during lipopolysaccharide (LPS) stimulation. PCR amplification and Sanger sequencing showed that circSTX8 was created by back-splicing of exons 5 to 6 of STX8. RNase R exonuclease treatment indicated that circSTX8 was a stable circular RNA. RT-qPCR showed that circSTX8 was highly expressed in cecum, spleen, harderian gland, stomach, thymus, liver, small intestine, and lung instead of that in muscle, cerebrum, and cerebellum (n = 8). Chicken macrophages were then divided into four groups: control, overexpression of circSTX8 group, LPS group, and overexpression of circSTX8 + LPS group. CCK8 and RT-qPCR showed that circSTX8 can exacerbate the cellular injury induced by LPS, resulting in a reduction of cell viability and an increase of the pro-inflammatory cytokines expression. In addition, four miRNAs were identified to interact with circSTX8, potentially targeting 914 genes, which were significantly enriched in the pathways of Tight junction, mTOR signaling pathway, MAPK signaling pathway, TGF-beta signaling pathway, Notch signaling pathway, ErbB signaling pathway, and Cell adhesion molecules. These findings showed that circSTX8 was able to regulate the LPS induced cellular immune and inflammatory response.


Assuntos
Galinhas , RNA Circular , Animais , Galinhas/genética , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Transdução de Sinais
15.
J Environ Manage ; 348: 119156, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37837764

RESUMO

Black soldier fly larvae (BSFL) have potential utility in converting livestock manure into larval biomass as a protein source for livestock feed. However, BSFL have limited ability to convert dairy manure (DM) rich in lignocellulose. Our previous research demonstrated that feeding BSFL with mixtures of 40% dairy manure and 60% chicken manure (DM40) provides a novel strategy for significantly improving their efficiency in converting DM. However, the mechanisms underlying the efficient conversion of DM40 by BSFL are unclear. In this study, we conducted a holistic study on the taxonomic stucture and potential functions of microbiota in the larval gut and manure during the DM and DM40 conversion by BSFL, as well as the effects of BSFL on cellulosic biodegradation and biomass production. Results showed that BSFL can consume cellulose and other nutrients more effectively and harvest more biomass in a shorter conversion cycle in the DM40 system. The larval gut in the DM40 system yielded a higher microbiota complexity. Bacillus and Amphibacillus in the BSFL gut were strongly correlated with the larval cellulose degradation capacity. Furthermore, in vitro screening results for culturable cellulolytic microbes from the larval guts showed that the DM40 system isolated more cellulolytic microbes. A key bacterial strain (DM40L-LB110; Bacillus subtilis) with high cellulase activity from the larval gut of DM40 was validated for potential industrial applications. Therefore, mixing an appropriate proportion of chicken manure into DM increased the abundance of intestinal bacteria (Bacillus and Amphibacillus) producing cellulase and improved the digestion ability (particularly cellulose degradation) of BSFL to cellulose-rich manure through changes in microbial communities composition in intestine. This study reveals the microecological mechanisms underlying the high-efficiency conversion of cellulose-rich manure by BSFL and provide potential applications for the large-scale cellulose-rich wastes conversion by intestinal microbes combined with BSFL.


Assuntos
Celulases , Dípteros , Animais , Larva , Esterco , Galinhas , Celulose , Bacillus subtilis , Digestão
16.
Biochem Genet ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667096

RESUMO

Cancer driver genes (CDGs) and the driver mutations disrupt the homeostasis of numerous critical cell activities, thereby playing a critical role in tumor initiation and progression. In this study, integrative bioinformatics analyses were performed based on a series of online databases, aiming to identify driver genes with high frequencies of mutations in head and neck cancers. Higher myeloma overexpressed (MYEOV) genetic variation frequency and expression level were connected to a poorer prognosis in head and neck cancer patients. MYEOV was dramatically upregulated within head and neck tumor samples and cells. Consistently, MYEOV overexpression remarkably enhanced the aggressiveness of head and neck cancer cells by promoting colony formation, cell invasion, and cell migration. Conversely, MYEOV knockdown attenuated cancer cell aggressiveness and inhibited tumor growth and metastasis in the oral orthotopic tumor model. In conclusion, MYEOV is overexpressed in head and neck cancer, with greater mutation frequencies correlating to a poorer prognosis in head and neck cancer patients. MYEOV serves as an oncogene in head and neck cancer through the promotion of tumor cell colony formation, invasion, and migration, as well as promoting tumor growth and metastasis in the oral orthotopic tumor model.

17.
J Environ Manage ; 346: 118945, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717394

RESUMO

Most fermentation waste filtrates can be used as raw materials for producing bio-fertilizers to reduce wastewater emissions and environmental pollution, but their bio-fertilizer utilization depends on the nutrients contained and their metabolized by functional microorganism. To achieve bio-fertilizer utilization of Acremonium terricola fermented waste filtrate, this study systematically explored the functional microbial species for making good use of waste liquid, optimized material process parameters for bio-fertilizer production based on D-optimal mixture design method, and analyzed the composition of the waste filtrate and its metabolism by functional microorganisms using a non-targeted LC-MS metagenomics technique. The results showed that Bacillus cereus was the functional microbial candidate for producing bio-fertilizer because of its more efficiently utilize the waste filtrate than other Bacillus sp. The optimal material process parameters of the liquid bio-fertilizer were the inoculum dose of 5% (v:v, %), 80% of waste filtrate, 0.25% of N, 3.5% of P2O5, 3.25% of K2O of mass percentage. Under these conditions, the colony forming unit (CFU) of Bacillus cereus could reach (1.59 ± 0.01) × 108 CFU/mL, which met the bio-fertilizer standard requirements of the People's Republic of China (NY/T798). Furthermore, the potential functions of bio-fertilizer were studied based on comparison of raw materials and production components: on the one hand, waste filtrate contained abundant of nitrogen and carbon sources, and bioactive substances secreted by Acremonium terricola, such as ß-alanyl-L-lysine, anserine, UMP, L-lactic acid and etc., which could meet the nutrient requirements of the growth of Bacillus cereus; On the other hand, some compounds of waste filtrate with the potential to benefit the plant growth and defense, such as betaine aldehyde, (2E,6E)-farnesol, homogentisic acid and etc., were significantly up regulated by Bacillus cereus utilization of the filtrate. To sum up, this work highlighted that the waste filtrate could be efficiently developed into liquid bio-fertilizer by Bacillus cereus.

18.
Adv Mater ; 35(45): e2303938, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37464982

RESUMO

Achieving high-performance perovskite light-emitting diodes (PeLEDs) with pure-red electroluminescence for practical applications remains a critical challenge because of the problematic luminescence property and spectral instability of existing emitters. Herein, high-efficiency Rec. 2020 pure-red PeLEDs, simultaneously exhibiting exceptional brightness and spectral stability, based on CsPb(Br/I)3 perovskite nanocrystals (NCs) capping with aromatic amino acid ligands featuring cation-π interactions, are reported. It is proven that strong cation-π interactions between the PbI6 -octahedra of perovskite units and the electron-rich indole ring of tryptophan (TRP) molecules not only chemically polish the imperfect surface sites, but also markedly increase the binding affinity of the ligand molecules, leading to high photoluminescence quantum yields and greatly enhanced spectral stability of the CsPb(Br/I)3 NCs. Moreover, the incorporation of small-size aromatic TRP ligands ensures superior charge-transport properties of the assembled emissive layers. The resultant devices emitting at around 635 nm demonstrate a champion external quantum efficiency of 22.8%, a max luminance of 12 910 cd m-2 , and outstanding spectral stability, representing one of the best-performing Rec. 2020 pure-red PeLEDs achieved so far.

19.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37219949

RESUMO

Human patients carrying genetic mutations in RNA binding motif 20 (RBM20) develop a clinically aggressive dilated cardiomyopathy (DCM). Genetic mutation knockin (KI) animal models imply that altered function of the arginine-serine-rich (RS) domain is crucial for severe DCM. To test this hypothesis, we generated an RS domain deletion mouse model (Rbm20ΔRS). We showed that Rbm20ΔRS mice manifested DCM with mis-splicing of RBM20 target transcripts. We found that RBM20 was mis-localized to the sarcoplasm in Rbm20ΔRS mouse hearts and formed RBM20 granules similar to those detected in mutation KI animals. In contrast, mice lacking the RNA recognition motif showed similar mis-splicing of major RBM20 target genes but did not develop DCM or exhibit RBM20 granule formation. Using in vitro studies with immunocytochemical staining, we demonstrated that only DCM-associated mutations in the RS domain facilitated RBM20 nucleocytoplasmic transport and promoted granule assembly. Further, we defined the core nuclear localization signal (NLS) within the RS domain of RBM20. Mutation analysis of phosphorylation sites in the RS domain suggested that this modification may be dispensable for RBM20 nucleocytoplasmic transport. Collectively, our findings revealed that disruption of RS domain-mediated nuclear localization is crucial for severe DCM caused by NLS mutations.


Assuntos
Cardiomiopatia Dilatada , Humanos , Camundongos , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Splicing de RNA , Mutação , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
20.
Immunity ; 56(6): 1187-1203.e12, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37160118

RESUMO

B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.


Assuntos
Antígenos CD28 , Linfócitos T CD8-Positivos , Camundongos , Animais , Antígenos CD28/metabolismo , Antígenos CD/metabolismo , Ligantes , Membranas Sinápticas/metabolismo , Antígeno B7-2 , Glicoproteínas de Membrana/metabolismo , Antígeno B7-1/metabolismo , Moléculas de Adesão Celular , Ativação Linfocitária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA