Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.659
Filtrar
1.
Small ; : e2401045, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38948959

RESUMO

A cerebral ischemia-reperfusion injury is ensued by an intricate interplay between various pathological processes including excitotoxicity, oxidative stress, inflammation, and apoptosis. For a long time, drug intervention policies targeting a single signaling pathway have failed to achieve the anticipated clinical efficacy in the intricate and dynamic inflammatory environment of the brain. Moreover, inadequate targeted drug delivery remains a significant challenge in cerebral ischemia-reperfusion injury therapy. In this study, a multifunctional nanoplatform (designated as PB-006@MSC) is developed using ZL006-loaded Prussian blue nanoparticles (PBNPs) camouflaged by a mesenchymal stem cell (MSC) membrane (MSCm). ZL006 is a neuroprotectant. It can be loaded efficiently into the free radical scavenger PBNP through mesoporous adsorption. This can simultaneously modulate multiple targets and pathways. MSCm biomimetics can reduce the nanoparticle immunogenicity, efficiently enhance their homing capability to the cerebral ischemic penumbra, and realize active-targeting therapy for ischemic stroke. In animal experiments, PB-006@MSC integrated reactive oxygen species (ROS) scavenging and neuroprotection. Thereby, it selectively targeted the cerebral ischemic penumbra (about fourfold higher accumulation at 24 h than in the non-targeted group), demonstrated a remarkable therapeutic efficacy in reducing the volume of cerebral infarction (from 37.1% to 2.3%), protected the neurogenic functions, and ameliorated the mortality.

2.
J Mater Chem B ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949411

RESUMO

Most existing hydrogels, even recently developed injectable hydrogels that undergo a reversible sol-gel phase transition in response to external stimuli, are designed to gel immediately before or after implantation/injection to prevent the free diffusion of materials and drugs; however, the property of immediate gelation leads to a very weak tumour-targeting ability, limiting their application in anticancer therapy. Therefore, the development of tumour-specific responsive hydrogels for anticancer therapy is imperative because tumour-specific responses improve their tumour-targeting efficacy, increase therapeutic effects, and decrease toxicity and side effects. In this review, we introduce the following three types of tumour-responsive hydrogels: (1) hydrogels that gel specifically at the tumour site; (2) hydrogels that decompose specifically at the tumour site; and (3) hydrogels that react specifically with tumours. For each type, their compositions, the mechanisms of tumour-specific responsiveness and their applications in anticancer treatment are comprehensively discussed.

3.
Angew Chem Int Ed Engl ; : e202411546, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949611

RESUMO

Two-dimensional covalent organic frameworks (2D-COFs) have recently emerged as fascinating scaffolds for solar-to-chemical energy conversion because of their customizable structures and functionalities. Herein, two tris(triazolo)triazine-based COF materials (namely COF-JLU51 and COF-JLU52) featuring large surface area, high crystallinity, excellent stability and photoelectric properties were designed and constructed for the first time. Remarkably, COF-JLU51 gave an outstanding H2O2 production rate of over 4200 µmol g-1 h-1 with excellent reusability in pure water and O2 under one standard sun light, that higher than its isomorphic COF-JLU52 and most of the reported metal-free materials, owing to its superior generation, separation and transport of photogenerated carriers. Experimental and theoretical researches prove that the photocatalytic process undergoes a combination of indirect 2e- O2 reduction reaction (ORR) and 4e- H2O oxidation reaction (WOR). Specifically, an ultrahigh yield of 7624.7 µmol g-1 h-1 with apparent quantum yield of 18.2% for COF-JLU52 was achieved in a 1:1 ratio of benzyl alcohol and water system. This finding contributes novel, nitrogen-rich and high-quality tris(triazolo)triazine-based COF materials, and also designate their bright future in photocatalytic solar transformations.

4.
Adv Sci (Weinh) ; : e2404272, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953411

RESUMO

The phenomenon of flexoelectricity, wherein mechanical deformation induces alterations in the electron configuration of metal oxides, has emerged as a promising avenue for regulating electron transport. Leveraging this mechanism, stress sensing can be optimized through precise modulation of electron transport. In this study, the electron transport in 2D ultra-smooth In2O3 crystals is modulated via flexoelectricity. By subjecting cubic In2O3 (c-In2O3) crystals to significant strain gradients using an atomic force microscope (AFM) tip, the crystal symmetry is broken, resulting in the separation of positive and negative charge centers. Upon applying nano-scale stress up to 100 nN, the output voltage and power values reach their maximum, e.g. 2.2 mV and 0.2 pW, respectively. The flexoelectric coefficient and flexocoupling coefficient of c-In2O3 are determined as ≈0.49 nC m-1 and 0.4 V, respectively. More importantly, the sensitivity of the nano-stress sensor upon c-In2O3 flexoelectric effect reaches 20 nN, which is four to six orders smaller than that fabricated with other low dimensional materials based on the piezoresistive, capacitive, and piezoelectric effect. Such a deformation-induced polarization modulates the band structure of c-In2O3, significantly reducing the Schottky barrier height (SBH), thereby regulating its electron transport. This finding highlights the potential of flexoelectricity in enabling high-performance nano-stress sensing through precise control of electron transport.

5.
J Physiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953534

RESUMO

The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons. The histamine-induced effect is mediated by H3 receptors expressed on VGLUT1-/VGLUT2-positive presynaptic terminals in CeL. Furthermore, optoactivation of histaminergic afferent terminals from the hypothalamic tuberomammillary nucleus (TMN) also significantly suppresses glutamatergic transmissions in CeL via H3 receptors. Histamine neither modulates inhibitory synaptic transmission by presynaptic H3 receptors nor directly excites CeL neurons by postsynaptic H1, H2 or H4 receptors. These results suggest that histaminergic afferent inputs and presynaptic H3 heteroreceptors may hold a critical position in balancing excitatory and inhibitory synaptic transmissions in CeL by selective modulation of glutamatergic drive, which may not only account for the pathophysiology of psychiatric disorders but also provide potential psychotherapeutic targets. KEY POINTS: Histamine selectively suppresses the excitatory, rather than inhibitory, synaptic transmissions on both PKC-δ- and SOM-positive neurons in the centrolateral amygdala (CeL). H3 receptors expressed on VGLUT1- or VGLUT2-positive afferent terminals mediate the suppression of histamine on glutamatergic synaptic transmission in CeL. Optogenetic activation of hypothalamic tuberomammillary nucleus (TMN)-CeL histaminergic projections inhibits glutamatergic transmission in CeL via H3 receptors.

6.
Org Lett ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953872

RESUMO

We herein report for the first time the inter- and intramolecular orthogonal cleavage of two ortho-nitrobenzyl (NB) analogues. It is shown that the nitroveratryl (NV) group can be photolyzed with high priority when NV and ortho-nitrobenzyl carbonate (oNBC) are used together as the protecting groups of glycans. Notably, the photolytic products could be used directly in the subsequent glycosylation without further purification. With the above-mentioned orthogonal photolabile protecting group strategy in hand, a Mycobacterium tuberculosis tetrasaccharide and a derivative of glucosyl glycerol were rapidly prepared.

7.
Epigenomics ; : 1-13, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957889

RESUMO

Aim: We investigate the genome-wide DNA methylation (DNAm) patterns of term low birth weight (TLBW) neonates. Methods: In the discovery phase, we assayed 32 samples (TLBW/control:16/16) using the EPIC 850k BeadChip Array. Targeted pyrosequencing of in 60 samples (TLBW/control:28/32) using targeted pyrosequencing during the replication phase. Results: The 850K array identified TLBW-associated 144 differentially methylated positions (DMPs) and 149 DMRs. Nearly 77% DMPs exhibited hypomethylation, located in the opensea and gene body regions. The most significantly enriched pathway in KEGG is sphingolipid metabolism (hsa00600), and the genes GALC and SGMS1 related to this pathway both show hypomethylation. Conclusion: Our analysis provides evidence of genome-wide DNAm alterations in TLBW. Further investigations are needed to elucidate the functional significance of these DNAm changes.


This study looked at the DNA of babies born after 37 weeks of pregnancy but weighing less than 2500 grams. We found that these babies had lower levels of DNA methylation, which might change how their bodies handle fats.

8.
Front Mol Neurosci ; 17: 1391189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962804

RESUMO

This investigation aims to elucidate the novel role of Stromal Interaction Molecule 1 (STIM1) in modulating store-operated calcium entry (SOCE) and its subsequent impact on inflammatory cytokine release in T lymphocytes, thereby advancing our understanding of trigeminal neuralgia (TN) pathogenesis. Employing the Gene Expression Omnibus (GEO) database, we extracted microarray data pertinent to TN to identify differentially expressed genes (DEGs). A subsequent comparison with SOCE-related genes from the Genecards database helped pinpoint potential target genes. The STRING database facilitated protein-protein interaction (PPI) analysis to spotlight STIM1 as a gene of interest in TN. Through histological staining, transmission electron microscopy (TEM), and behavioral assessments, we probed STIM1's pathological effects on TN in rat models. Additionally, we examined STIM1's influence on the SOCE pathway in trigeminal ganglion cells using techniques like calcium content measurement, patch clamp electrophysiology, and STIM1- ORAI1 co-localization studies. Changes in the expression of inflammatory markers (TNF-α, IL-1ß, IL-6) in T cells were quantified using Western blot (WB) and enzyme-linked immunosorbent assay (ELISA) in vitro, while immunohistochemistry and flow cytometry were applied in vivo to assess these cytokines and T cell count alterations. Our bioinformatic approach highlighted STIM1's significant overexpression in TN patients, underscoring its pivotal role in TN's etiology and progression. Experimental findings from both in vitro and in vivo studies corroborated STIM1's regulatory influence on the SOCE pathway. Furthermore, STIM1 was shown to mediate SOCE-induced inflammatory cytokine release in T lymphocytes, a critical factor in TN development. Supportive evidence from histological, ultrastructural, and behavioral analyses reinforced the link between STIM1-mediated SOCE and T lymphocyte-driven inflammation in TN pathogenesis. This study presents novel evidence that STIM1 is a key regulator of SOCE and inflammatory cytokine release in T lymphocytes, contributing significantly to the pathogenesis of trigeminal neuralgia. Our findings not only deepen the understanding of TN's molecular underpinnings but also potentially open new avenues for targeted therapeutic strategies.

9.
Science ; 385(6704): eadm8762, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963845

RESUMO

Understanding how numerous quantitative trait loci (QTL) shape phenotypic variation is an important question in genetics. To address this, we established a permanent population of 18,421 (18K) rice lines with reduced population structure. We generated reference-level genome assemblies of the founders and genotyped all 18K-rice lines through whole-genome sequencing. Through high-resolution mapping, 96 high-quality candidate genes contributing to variation in 16 traits were identified, including OsMADS22 and OsFTL1 verified as causal genes for panicle number and heading date, respectively. We identified epistatic QTL pairs and constructed a genetic interaction network with 19 genes serving as hubs. Overall, 170 masking epistasis pairs were characterized, serving as an important factor contributing to genetic background effects across diverse varieties. The work provides a basis to guide grain yield and quality improvements in rice.


Assuntos
Epistasia Genética , Genoma de Planta , Oryza , Locos de Características Quantitativas , Oryza/genética , Sequenciamento Completo do Genoma , Mapeamento Cromossômico , Genes de Plantas , Genótipo , Redes Reguladoras de Genes , Fenótipo
10.
J Colloid Interface Sci ; 674: 972-981, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964001

RESUMO

Piezo-photocatalysis combines photocatalysis and piezoelectric effects to enhance catalytic efficiency by creating an internal electric field in the photocatalyst, improving carrier separation and overall performance. This study presents a high-performance piezo-photocatalyst for efficient dye degradation using a synergistic barium titanate (BTO)-MXene composite. The composite was synthesized via a facile method, combining the unique properties of BTO nanoparticles with the high conductivity of MXene. The structural and morphological analysis confirmed the successful formation of the composite, with well-dispersed BTO nanoparticles on the MXene surface. The piezo-photocatalytic activity of the composite was evaluated using a typical dye solution (Rhodamine B: RhB) under ultraviolet irradiation and mechanical agitation. The results revealed a remarkable enhancement in dye degradation (90 % in 15 min for piezo-photocatalysis) compared to individual stimuli (58.2 % for photocatalysis and 95.8 % in 90 min for piezocatalysis), highlighting the synergistic effects between BTO and MXene. The enhanced catalytic performance was attributed to the efficient charge separation and transfer facilitated by the composite's structure, leading to increased reactive species generation and dye molecule degradation. Furthermore, the composite exhibited excellent stability and reusability, showcasing its potential for practical applications in wastewater treatment. Overall, this work represents a promising strategy for designing high-performance synergistic catalysts, addressing the pressing need for sustainable solutions in environmental remediation.

11.
Food Chem ; 458: 140275, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964102

RESUMO

Enzyme-inhibited electrochemical sensor is a promising strategy for detecting organophosphorus pesticides (OPs). However, the poor stability of enzymes and the high oxidation potential of thiocholine signal probe limit their potential applications. To address this issue, an indirect strategy was proposed for highly sensitive and reliable detection of chlorpyrifos by integrating homogeneous reaction and heterogeneous catalysis. In the homogeneous reaction, Hg2+ with low oxidation potential was employed as signal probe for chlorpyrifos detection since its electroactivity can be inhibited by thiocholine, which was the hydrolysate of acetylthiocholine catalyzed by acetylcholinesterase. Additionally, Co,N-doped hollow porous carbon nanocage@carbon nanotubes (Co,N-HPNC@CNT) derived from ZIF-8@ZIF-67 was utilized as high-performance electrode material to amplify the stripping voltammetry signal of Hg2+. Thanks to their synergistic effect, the sensor exhibited outstanding sensing performance, excellent stability and good anti-interference ability. This strategy paves the way for the development of high-performance OP sensors and their application in food safety.

12.
Small ; : e2402942, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975677

RESUMO

Recent advancements in metal-organic frameworks (MOFs) underscore their significant potential in chemical and materials research, owing to their remarkable properties and diverse structures. Despite challenges like intrinsic brittleness, powdered crystalline nature, and limited stability impeding direct applications, MOF-based aerogels have shown superior performance in various areas, particularly in water treatment and contaminant removal. This review highlights the latest progress in MOF-based aerogels, with a focus on hybrid systems incorporating materials like graphene, carbon nanotube, silica, and cellulose in MOF aerogels, which enhance their functional properties. The manifold advantages of MOF-based aerogels in energy storage, adsorption, and catalysis are discussed, with an emphasizing on their improved stability, processability, and ease of handling. This review aims to unlock the potential of MOF-based aerogels and their real-world applications. Aerogels are expected to reshape the technological landscape of MOFs through enhanced stability, adaptability, and efficiency.

13.
Chem Biol Interact ; 399: 111130, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960301

RESUMO

Triptolide (TP) is a major bioactive compound derived from Tripterygium wilfordii Hook. F. (TwHF) known for its medicinal properties, but it also exhibits potential toxic effects. It has been demonstrated to induce severe male reproductive toxicity, yet the precise mechanism behind this remains unclear, which limits its broad clinical application. This study aimed to investigate the mechanisms underlying testicular damage and spermatogenesis dysfunction induced by TP in mice, using both mouse models and the spermatocyte-derived cell line GC-2spd. In the present study, it was found that TP displayed significant testicular microstructure damaged and spermatogenesis defects including lower concentration and abnormal morphology by promoting ROS formation, MDA production and restraining GSH level, glutathione peroxidase 4 (GPX4) expression in vivo. Furthermore, Ferrostatin-1 (FER-1), a ferroptosis inhibitor, was found to significantly reduce the accumulation of lipid peroxidation, alleviate testicular microstructural damage, and enhance spermatogenic function in mice. Besides, notably decreased cell viability, collapsed mitochondrial membrane potential, and elevated DNA damage were observed in vitro. The above-mentioned phenomenon could be reversed by pre-treatment of FER-1, indicating that ferroptosis participated in the TP-mediated spermatogenesis dysfunction. Mechanistically, TP could enhance GPX4 ubiquitin degradation via triggering K63-linked polyubiquitination of GPX4, thereby stimulating ferroptosis in spermatocytes. Functionally, GPX4 deletion intensified ferroptosis and exacerbated DNA damage in GC-2 cells, while GPX4 overexpression mitigated ferroptosis induced by TP. Overall, these findings for the first time indicated a vital role of ferroptosis in TP induced-testicular injury and spermatogenic dysfunction through promoting GPX4 K63-linked polyubiquitination, which hopefully offers a potential therapeutic avenue for TP-related male reproductive damage. In addition, this study also provides a theoretical foundation for the improved clinical application of TP or TwHF in the future.

14.
Ital J Pediatr ; 50(1): 124, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956688

RESUMO

BACKGROUND: Addison's disease and X-linked adrenoleukodystrophy (X-ALD) (Addison's-only) are two diseases that need to be identified. Addison's disease is easy to diagnose clinically when only skin and mucosal pigmentation symptoms are present. However, X-ALD (Addison's-only) caused by ABCD1 gene variation is ignored, thus losing the opportunity for early treatment. This study described two patients with initial clinical diagnosis of Addison's disease. However, they rapidly developed neurological symptoms triggered by infection. After further genetic testing, the two patients were diagnosed with X-ALD. METHODS: We retrospectively analyzed X-ALD patients admitted to our hospital. Clinical features, laboratory test results, and imaging data were collected. Whole-exome sequencing was used in molecular genetics. RESULTS: Two patients were included in this study. Both of them had significantly increased adrenocorticotropic hormone level and skin and mucosal pigmentation. They were initially clinically diagnosed with Addison's disease and received hydrocortisone treatment. However, both patients developed progressive neurological symptoms following infectious disease. Further brain magnetic resonance imaging was completed, and the results suggested demyelinating lesions. Molecular genetics suggested variations in the ABCD1 gene, which were c.109_110insGCCA (p.C39Pfs*156), c.1394-2 A > C (NM_000033), respectively. Therefore, the two patients were finally diagnosed with X-ALD, whose classification had progressed from X-ALD (Addison's-only) to childhood cerebral adrenoleukodystrophy (CCALD). Moreover, the infection exacerbates the demyelinating lesions and accelerates the onset of neurological symptoms. Neither the two variation sites in this study had been previously reported, which extends the ABCD1 variation spectrum. CONCLUSIONS: Patients with only symptoms of adrenal insufficiency cannot be simply clinically diagnosed with Addison's disease. Being alert to the possibility of ABCD1 variation is necessary, and complete genetic testing is needed as soon as possible to identify X-ALD (Addison's-only) early to achieve regular monitoring of the disease and receive treatment early. In addition, infection, as a hit factor, may aggravate demyelinating lesions of CCALD. Thus, patients should be protected from external environmental factors to delay the progression of cerebral adrenoleukodystrophy.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Adrenoleucodistrofia , Humanos , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Masculino , Estudos Retrospectivos , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Criança , Erros de Diagnóstico , Imageamento por Ressonância Magnética , Doença de Addison/diagnóstico , Doença de Addison/genética
15.
Clin Nutr ESPEN ; 63: 259-266, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38972036

RESUMO

BACKGROUND & AIMS: The association between artificial sweeteners and various cancers has been investigated, but their relationship with respiratory system cancers remains uncertain. To address this knowledge gap, we conducted a comprehensive Mendelian Randomization (MR) analysis. METHODS: We looked for SNPs associated with artificial sweetener intake and respiratory system cancers from the IEU OpenGWAS project, as well as SNPs related to sweet taste in artificial sweeteners from Hwang et al.'s study. Rigorous quality control procedures were implemented to select instrumental Single Nucleotide Polymorphisms that were closely linked to artificial sweetener intake. To ensure the reliability of our findings, we employed five different analytical methods, with the inverse variance weighting method being the primary approach. Additionally, we thoroughly assessed heterogeneity, pleiotropy, and sensitivity. Finally, we conducted Multivariable Mendelian Randomization (MVMR) to validate our results. RESULTS: Intake of artificial sweetener added to cereal showed a positive association with malignant neoplasm of the lip, oral cavity, and pharynx (OR: 1027.54; 95% CI: 4.8-219994.46; P = 0.011), and the result was also confirmed by the MVMR analysis. In addition, better perceived intensity of aspartame was negatively associated with cancers in these regions (OR: 0.49; 95% CI: 0.28-0.88; P = 0.016). Intake of artificial sweetener added to coffee or tea was not related with respiratory system cancer. CONCLUSIONS: Our research offers evidence that the consumption of artificial sweeteners in cereals could increase the risk of cancers in the lip, oral cavity, and pharynx. Additionally, a greater sensitivity to the taste of aspartame may lower this risk.

16.
Front Psychol ; 15: 1380281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974109

RESUMO

Introduction: The purpose of this study is to systematically compare and assess the differences in perceptual-cognitive skills between expert and non-expert sports officials, and further explore the potential differences caused by different types of sports officials, in order to provide a more comprehensive understanding of the perceptual-cognitive skills of sports officials. Methods: Relevant literature published before 31 December 2022 was searched in four English databases. Review Manager 5.4 and Stata 12.0 software were used for meta-analysis and bias test. Results: Expert sports officials are significantly more accurate in their decision-making than non-expert sports officials, and exhibit a large amount of effect size (SMD = 1.09; 95%CI: 0.52, 1.66; P < 0.05). Expert sports officials had significantly fewer number of fixations than non-expert sports officials and showed a moderate amount of effect size (SMD = 0.71; 95%CI: 1.25, 0.17; P < 0.05). Expert sports officials' duration of fixation (SMD = 0.23; 95%CI: 0.25, 0.71; P = 0.35) were not significantly different from non-expert sports officials. Discussion: It can be seen that there are differences in the Perceptual-cognitive skills of expert and non-expert sports officials. Decision-making accuracy can serve as an important indicator for distinguishing the perceptual-cognitive skills of expert and non-expert sports officials. Number of fixations can serve as important indicators to differentiate the perceptual-cognitive skills of monitors. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=418594, identifier: CRD42023418594.

17.
Heliyon ; 10(12): e32563, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975137

RESUMO

Flavonoids are found in the roots, stems, leaves, and fruits of many plant taxa. They are related to plant growth and development, pigment formation, and protection against environmental stress. Flavonoids function as antioxidants and exert anti-inflammatory effects in the cardiovascular system by modulating classical inflammatory response pathways, such as the TLR4-NF-ĸB, PI3K-AKT, and Nrf2/HO-1 signalling pathways. There is increasing evidence for the therapeutic effects of flavonoids on hypertension, atherosclerosis, and other diseases. The potential clinical value of flavonoids for diseases of the cardiovascular system has been widely explored. For example, studies have evaluated the roles of flavonoids in the regulation of blood pressure via endothelium-dependent and non-endothelium-dependent pathways and in the regulation of myocardial systolic and diastolic functions by influencing calcium homeostasis and smooth muscle-related protein expression. Flavonoids also have hypoglycaemic, hypolipidemic, anti-platelet, autophagy, and antibacterial effects. In this paper, the role and mechanism of flavonoids in cardiovascular diseases were reviewed in order to provide reference for the clinical application of flavonoids in the future.

18.
Int Ophthalmol ; 44(1): 299, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951270

RESUMO

PURPOSE: To analyse and compare the clinical characteristics and treatment outcomes of patients with acute angle closure (AAC) who presented before the COVID-19 pandemic, during the COVID-19 management and after their downgrading. METHODS: Consecutive AAC patients were recruited from our hospital and divided into three groups: those treated before the COVID-19 pandemic (Group1), during the COVID-19 management (Group2) and after the management downgrade (Group3). The demographic variables, clinical characteristics, treatment methods and therapeutic outcomes of the groups were compared. RESULTS: When compared to Groups1 and 2, Group3 showed a significantly higher incidence of AAC (0.27%, P < 0.001), a longer time from symptoms to treatment (TST; 160.88 ± 137.05 h, P = 0.031) and worse uncorrected visual acuity (P = 0.009) at presentation. In Group3, 68.9% had a history of COVID-19 and 28.5% developed ocular symptoms of AAC after taking medication for COVID-19 symptoms. The average time from the onset of COVID-19 to the appearance of eye symptoms was 3.21 ± 4.00 days. CONCLUSIONS: The COVID-19 has had a multifaceted impact on the incidence of AAC. Therefore, it is crucial to strengthen health education on glaucoma, especially AAC. The prevention and timely treatment of AAC should be emphasised to combat global blindness.


Assuntos
COVID-19 , Glaucoma de Ângulo Fechado , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Masculino , Feminino , China/epidemiologia , Glaucoma de Ângulo Fechado/epidemiologia , Glaucoma de Ângulo Fechado/fisiopatologia , Glaucoma de Ângulo Fechado/terapia , Pessoa de Meia-Idade , Idoso , Incidência , Doença Aguda , Estudos Retrospectivos , Pressão Intraocular/fisiologia , Acuidade Visual
19.
Cell Death Differ ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951701

RESUMO

Chronic kidney disease (CKD) is a major global health concern and the third leading cause of premature death. Renal fibrosis is the primary process driving the progression of CKD, but the mechanisms behind it are not fully understood, making treatment options limited. Here, we find that the E3 ligase TRIM65 is a positive regulator of renal fibrosis. Deletion of TRIM65 results in a reduction of pathological lesions and renal fibrosis in mouse models of kidney fibrosis induced by unilateral ureteral obstruction (UUO)- and folic acid. Through screening with a yeast-hybrid system, we identify a new interactor of TRIM65, the mammalian cleavage factor I subunit CFIm25 (NUDT21), which plays a crucial role in fibrosis through alternative polyadenylation (APA). TRIM65 interacts with NUDT21 to induce K48-linked polyubiquitination of lysine 56 and proteasomal degradation, leading to the inhibition of TGF-ß1-mediated SMAD and ERK1/2 signaling pathways. The degradation of NUDT21 subsequently altered the length and sequence content of the 3'UTR (3'UTR-APA) of several pro-fibrotic genes including Col1a1, Fn-1, Tgfbr1, Wnt5a, and Fzd2. Furthermore, reducing NUDT21 expression via hydrodynamic renal pelvis injection of adeno-associated virus 9 (AAV9) exacerbated UUO-induced renal fibrosis in the normal mouse kidneys and blocked the protective effect of TRIM65 deletion. These findings suggest that TRIM65 promotes renal fibrosis by regulating NUDT21-mediated APA and highlight TRIM65 as a potential target for reducing renal fibrosis in CKD patients.

20.
Eur J Neurosci ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951719

RESUMO

Myelin sheath plays important roles in information conduction and nerve injury repair in the peripheral nerve system (PNS). Enhancing comprehension of the structure and components of the myelin sheath in the PNS during development would contribute to a more comprehensive understanding of the developmental and regenerative processes. In this research, the structure of sciatic nerve myelin sheath in C57BL/6 mice from embryonic day 14 (E14) to postnatal 12 months (12M) was observed with transmission electron microscopy. Myelin structure appeared in the sciatic nerve as early as E14, and the number and thickness of myelin lamellar gradually increased with the development until 12M. Transcriptome analysis was performed to show the expressions of myelin-associated genes and transcriptional factors involved in myelin formation. The genes encoding myelin proteins (Mag, Pmp22, Mpz, Mbp, Cnp and Prx) showed the same expression pattern, peaking at postnatal day 7 (P7) and P28 after birth, whereas the negative regulators of myelination (c-Jun, Tgfb1, Tnc, Cyr61, Ngf, Egr1, Hgf and Bcl11a) showed an opposite expression pattern. In addition, the expression of myelin-associated proteins and transcriptional factors was measured by Western blot and immunofluorescence staining. The protein expressions of MAG, PMP22, MPZ, CNPase and PRX increased from E20 to P14. The key transcriptional factor c-Jun co-localized with the Schwann cells Marker S100ß and decreased after birth, whereas Krox20/Egr2 increased during development. Our data characterized the structure and components of myelin sheath during the early developmental stages, providing insights for further understanding of PNS development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...