Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35890293

RESUMO

The count of circulating tumor cells (CTCs) has been associated with a worse prognosis in different types of cancer. Perioperatively, CTCs detach due to mechanical forces. Diagnostic tools exist to detect and isolate CTCs, but no therapeutic technique is currently available to remove CTCs in vivo from unprocessed blood. The aim of this study was to design and test new magnetic nanoparticles to purify whole blood from CTCs. Novel magnetic carbon-coated cobalt (C/Co) nanoparticles conjugated with anti-epithelial cell adhesion molecule (EpCAM) antibodies were synthesized, and their antifouling and separation properties were determined. The newly developed C/Co nanoparticles showed excellent separation and antifouling properties. They efficiently removed tumor cells that were added to healthy subjects' blood samples, through an anti-EpCAM antibody interaction. The nanoparticles did not interact with other blood components, such as lymphocytes or the coagulation system. In blood samples of carcinoma patients suffering from metastatic disease, on average, ≥68% of CTCs were removed. These nanoparticles could prompt the development of a blood purification technology, such as a dialysis-like device, to perioperatively remove CTCs from the blood of cancer patients in vivo and potentially improve their prognosis.

2.
Br J Pharmacol ; 174(21): 3865-3880, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28832971

RESUMO

BACKGROUND AND PURPOSE: Pancreatitis is a common inflammation of the pancreas with rising incidence in many countries. Despite improvements in diagnostic techniques, the disease is associated with high risk of severe morbidity and mortality and there is an urgent need for new therapeutic interventions. In this study, we evaluated whether histone deacetylases (HDACs), key epigenetic regulators of gene transcription, are involved in the development of the disease. EXPERIMENTAL APPROACH: We analysed HDAC regulation during cerulein-induced acute, chronic and autoimmune pancreatitis using different transgenic mouse models. The functional relevance of class I HDACs was tested with the selective inhibitor MS-275 in vivo upon pancreatitis induction and in vitro in activated macrophages and primary acinar cell explants. KEY RESULTS: HDAC expression and activity were up-regulated in a time-dependent manner following induction of pancreatitis, with the highest abundance observed for class I HDACs. Class I HDAC inhibition did not prevent the initial acinar cell damage. However, it effectively reduced the infiltration of inflammatory cells, including macrophages and T cells, in both acute and chronic phases of the disease, and directly disrupted macrophage activation. In addition, MS-275 treatment reduced DNA damage in acinar cells and limited acinar de-differentiation into acinar-to-ductal metaplasia in a cell-autonomous manner by impeding the EGF receptor signalling axis. CONCLUSIONS AND IMPLICATIONS: These results demonstrate that class I HDACs are critically involved in the development of acute and chronic forms of pancreatitis and suggest that blockade of class I HDAC isoforms is a promising target to improve the outcome of the disease.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Pancreatite/tratamento farmacológico , Células Acinares/metabolismo , Doença Aguda , Animais , Doenças Autoimunes/fisiopatologia , Benzamidas/farmacologia , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Histona Desacetilases/metabolismo , Leucócitos/metabolismo , Masculino , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pancreatite/fisiopatologia , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/fisiopatologia , Piridinas/farmacologia , Fatores de Tempo
3.
J Pathol ; 238(3): 434-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26510396

RESUMO

Determining signalling pathways that regulate pancreatic regeneration following pancreatitis is critical for implementing therapeutic interventions. In this study we elucidated the molecular mechanisms underlying the effects of transforming growth factor-ß (TGFß) in pancreatic epithelial cells during tissue regeneration. To this end, we conditionally inactivated TGFß receptor II (TGFß-RII) using a Cre-LoxP system under the control of pancreas transcription factor 1a (PTF1a) promoter, specific for the pancreatic epithelium, and evaluated the molecular and cellular changes in a mouse model of cerulein-induced pancreatitis. We show that TGFß-RII signalling does not mediate the initial acinar cell damage observed at the onset of pancreatitis. However, TGFß-RII signalling not only restricts acinar cell replication during the regenerative phase of the disease but also limits ADM formation in vivo and in vitro in a cell-autonomous manner. Analyses of molecular mechanisms underlying the observed phenotype revealed that TGFß-RII signalling stimulates the expression of cyclin-dependent kinase inhibitors and intersects with the EGFR signalling axis. Finally, TGFß-RII ablation in epithelial cells resulted in increased infiltration of inflammatory cells in the early phases of pancreatitis and increased activation of pancreatic stellate cells in the later stages of pancreatitis, thus highlighting a TGFß-based crosstalk between epithelial and stromal cells regulating the development of pancreatic inflammation and fibrosis. Collectively, our data not only contribute to clarifying the cellular processes governing pancreatic tissue regeneration, but also emphasize the conserved role of TGFß as a tumour suppressor, both in the regenerative process following pancreatitis and in the initial phases of pancreatic cancer.


Assuntos
Células Acinares/patologia , Pâncreas/patologia , Pancreatite/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Amilases/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Pontos de Checagem do Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/patologia , Células Cultivadas , Ceruletídeo/toxicidade , Células Epiteliais/patologia , Fibrose/patologia , Irritantes/toxicidade , Lipase/metabolismo , Masculino , Metaplasia/patologia , Camundongos Knockout , Camundongos Transgênicos , Pâncreas/enzimologia , Neoplasias Pancreáticas/patologia , Pancreatite/enzimologia , Receptor do Fator de Crescimento Transformador beta Tipo II
4.
J Pathol ; 237(4): 495-507, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26235267

RESUMO

The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells.


Assuntos
Células Acinares/citologia , Desdiferenciação Celular/fisiologia , Pâncreas Exócrino/fisiologia , Serotonina/metabolismo , Envelhecimento , Animais , Modelos Animais de Doenças , Immunoblotting , Imuno-Histoquímica , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Pancreatite/patologia , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...