Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 84: 104286, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36179550

RESUMO

BACKGROUND: Alterations in the gut microbiome have been associated with HIV infection, but the relative impact of HIV versus other factors on the gut microbiome has been difficult to determine in cross-sectional studies. METHODS: To address this, we examined the gut microbiome, serum metabolome, and cytokines longitudinally within 27 individuals before and during acute HIV using samples collected from several ongoing cohort studies. Matched control participants (n=28) from the same cohort studies without HIV but at similar behavioral risk were used for comparison. FINDINGS: We identified few changes in the microbiome during acute HIV infection, but did find alterations in serum metabolites involving secondary bile acid (lithocholate sulfate, glycocholenate sulfate) and amino acid metabolism (3-methyl-2-oxovalerate, serine, cysteine, N-acetylputrescine). Greater microbiome differences, including decreased Bacteroides spp and increased Megasphaera elsdenii, were seen when comparing pre-HIV infection visits to matched at-risk controls. Those who acquired HIV also had elevated inflammatory cytokines (TNF-α, B cell activating factor, IL-8) and bioactive lipids (palmitoyl-sphingosine-phosphoethanolamide and glycerophosphoinositol) prior to HIV acquisition compared to matched controls. INTERPRETATION: Longitudinal sampling identified pre-existing microbiome differences in participants with acute HIV compared to matched control participants observed over the same period. These data highlight the importance of increasing understanding of the role of the microbiome in HIV susceptibility. FUNDING: This work was supported by NIH/NIAID (K08AI124979; P30AI117943), NIH/NIDA (U01DA036267; U01DA036939; U01DA036926; U24DA044554), and NIH/NIMH (P30MH058107; R34MH105272).


Assuntos
Disbiose , Infecções por HIV , Fator Ativador de Células B , Ácidos e Sais Biliares , Biomarcadores , Estudos Transversais , Cisteína , Humanos , Interleucina-8 , Lipídeos , Ácido Litocólico , Serina , Soroconversão , Esfingosina , Sulfatos , Fator de Necrose Tumoral alfa
2.
AIDS ; 36(1): 49-58, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34873092

RESUMO

OBJECTIVE: The rectal microbiome was examined to assess the relationship between the microbiome and liver disease in HIV-infection. DESIGN: Eighty-two HIV-1 mono-infected individuals from the PROSPEC-HIV-study (NCT02542020) were grouped into three liver health categories based on results of controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) of transient elastography: normal (n = 30), steatosis (n = 30), or fibrosis (n = 22). METHODS: Liver steatosis and fibrosis were defined by CAP at least 248 dB/m and LSM at least 8.0 kPa, respectively. 16S rRNA gene and whole genome shotgun metagenomic sequencing were performed on rectal swabs. Bacterial differences were assessed using zero-inflated negative binomial regression and random forests modeling; taxonomic drivers of functional shifts were identified using FishTaco. RESULTS: Liver health status explained four percentage of the overall variation (r2 = 0.04, P = 0.003) in bacterial composition. Participants with steatosis had depletions of Akkermansia muciniphila and Bacteroides dorei and enrichment of Prevotella copri, Finegoldia magna, and Ruminococcus bromii. Participants with fibrosis had depletions of Bacteroides stercoris and Parabacteroides distasonis and enrichment of Sneathia sanguinegens. In steatosis, functional analysis revealed increases in primary and secondary bile acid synthesis encoded by increased Eubacterium rectale, F. magna, and Faecalibacterium prausnitzii and decreased A. muciniphila, Bacteroides fragilis and B. dorei. Decreased folate biosynthesis was driven by similar changes in microbial composition. CONCLUSION: HIV mono-infection with steatosis or fibrosis had distinct microbial profiles. Some taxa are similar to those associated with non-alcoholic fatty liver disease in HIV-negative populations. Further studies are needed to define the role of the gut microbiota in the pathogenesis of liver disease in HIV-infected persons.


Assuntos
Técnicas de Imagem por Elasticidade , Fígado Gorduroso , Infecções por HIV , Cirrose Hepática , Brasil/epidemiologia , Fígado Gorduroso/microbiologia , Fígado Gorduroso/patologia , Infecções por HIV/complicações , Infecções por HIV/patologia , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/microbiologia , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Projetos Piloto , RNA Ribossômico 16S/genética
3.
Front Microbiol ; 12: 713234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475864

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in western countries both in children and adults. Metabolic dysregulation associated with gut microbial dysbiosis may influence disease progression from hepatic steatosis to inflammation and subsequent fibrosis. Using a multi-omics approach, we profiled the oral and fecal microbiome and plasma metabolites from 241 predominantly Latino children with non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver (NAFL), and controls. Children with more severe liver pathology were dysbiotic and had increased gene content associated with lipopolysaccharide biosynthesis and lipid, amino acid and carbohydrate metabolism. These changes were driven by increases in Bacteroides and concomitant decreases of Akkermansia, Anaerococcus, Corynebacterium, and Finegoldia. Non-targeted mass spectrometry revealed perturbations in one-carbon metabolism, mitochondrial dysfunction, and increased oxidative stress in children with steatohepatitis and fibrosis. Random forests modeling of plasma metabolites was highly predictive of non-alcoholic steatohepatitis (NASH) (97% accuracy) and hepatic fibrosis, steatosis and lobular inflammation (93.8% accuracy), and can differentiate steatohepatitis from simple steatosis (90.0% accuracy). Multi-omics predictive models for disease and histology findings revealed perturbations in one-carbon metabolism, mitochondrial dysfunction, and increased oxidative stress in children with steatohepatitis and fibrosis. These results highlight the promise of non-invasive biomarkers for the growing epidemic of fatty liver disease.

4.
J Matern Fetal Neonatal Med ; 34(20): 3335-3343, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31744351

RESUMO

INTRODUCTION: The infant gut microbiome is thought to play a key role in developing metabolic and immunologic pathways. Antibiotics have been shown to disrupt the human microbiome, but the impact they have on infants during this key window of development remains poorly understood. Through this study, we further characterize the effect antibiotics have on the gut microbiome of infants by looking at metagenomic sequencing data over time. MATERIALS AND METHODS: Stool samples were collected on infants from a large tertiary care neonatal intensive care unit. After DNA extraction, metagenomics libraries were generated and sequenced. Taxonomic and functional analyses were then performed. Further directed specimen sequencing for fungal species was also performed. RESULTS: A total of 51 stool samples from 25 infants were analyzed: seven infants were on antibiotics during at least one of their collection time points. Antibiotics given at birth altered the microbiome (PERMANOVA R2 = 0.044, p = .002) but later courses did not (R2 = 0.023, p = .114). Longitudinal samples collected while off antibiotics were more similar than those collected during a transition on or off antibiotics (mean Bray-Curtis distance 0.29 vs. 0.63, Wilcoxon p = .06). Functional analysis revealed four microbial pathways that were disrupted by antibiotics given at-birth (p < .1, folate synthesis, glycerolipid metabolism, fatty acid biosynthesis, and glycolysis). No functional changes associated with current antibiotic use were identified. In a limited sample set, we saw little evidence of fungal involvement in the overall infant microbiome. CONCLUSION: Through this study, we have further characterized the role antibiotics have in the development of the infant microbiome. Antibiotics given at birth were associated with alterations in the microbiome and had significant impact on the functional pathways involved in folate synthesis and multiple metabolic pathways. Later courses of antibiotics led to stochastic dysbiosis and a significant decrease in Escherichia coli. Further characterization of the infant mycobiome is still needed.


Assuntos
Microbioma Gastrointestinal , Antibacterianos , Disbiose , Fezes , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal
5.
Open Forum Infect Dis ; 6(11): ofz463, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32258202

RESUMO

BACKGROUND: Oral daily tenofovir (TFV) disoproxil fumarate/emtricitabine (TDF/FTC) for human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP) is highly effective for HIVprevention, yet long-term effects are not fully understood. We investigated the effects of PrEP on the rectal microbiome in a cohort of men who have sex with men (MSM). METHODS: This cross-sectional analysis included HIV-negative MSM either on PrEP (n = 37) or not (n = 37) selected from an ongoing cohort using propensity score matching. Rectal swabs were used to examine microbiome composition using 16S ribosomal ribonucleic acid gene sequencing, and associations between PrEP use and microbiota abundance were examined. Hair specimens were used to quantify TFV and FTC exposure over the past 6 weeks on a subset of participants (n = 15). RESULTS: Pre-exposure prophylaxis use was associated with a significant increase in Streptococcus abundance (adjusted P = .015). Similar associations were identified using least absolute shrinkage and selection operator (LASSO) regression, confirming the increase in Streptococcus and also showing increased Mitsuokella, Fusobacterium, and decreased Escherichia/Shigella. Increased Fusobacterium was significantly associated with increasing TFV exposure. CONCLUSIONS: Oral TDF/FTC for PrEP is associated with rectal microbiome changes compared to well matched controls, specifically increased Streptococcus and Fusobacterium abundance. This study highlights the need for future investigations of the role of microbiome changes on HIV susceptibility and effectiveness of PrEP.

6.
Microbiome ; 6(1): 155, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201048

RESUMO

BACKGROUND: Recent advances in sequencing technologies and bioinformatics tools have allowed for large-scale microbiome studies that are rapidly advancing medical research. However, small changes in technique or analysis can significantly alter the results and lead to conflicting findings. Quantifying the technical versus biological variation expected in targeted 16S rRNA gene sequencing studies and how this variation changes with input biomass is critical to guide meaningful interpretation of the current literature and plan future research. RESULTS: Data were compiled from 469 sequencing libraries across 19 separate targeted 16S rRNA gene sequencing runs over a 2.5-year time period. Following removal of contaminant sequences identified from negative controls, 244 samples retained sufficient reads for further analysis. Coefficients of variation for intra- and inter-assay variation from repeated measurements of a bacterial mock community ranged from 8.7 to 37.6% (intra) and 15.6 to 80.5% (inter) for all but one genus of bacteria whose relative abundance was greater than 1%. Intra- versus inter-assay Bray-Curtis pairwise distances for a single stool sample were 0.11 versus 0.31, whereas intra-assay variation from repeat stool samples from the same donor was greater at 0.38 (Wilcoxon p = 0.001). A dilution series of the bacterial mock community was used to assess the effect of input biomass on variability. Pairwise distances increased with more dilute samples, and estimates of relative abundance became unreliable below approximately 100 copies of the 16S rRNA gene per microliter. Using this data, we created a prediction model to estimate the expected variation in microbiome measurements for given input biomass and relative abundance values. CONCLUSIONS: Well-controlled microbiome studies are sufficiently robust to capture small biological effects and can achieve levels of variability consistent with clinical assays. Relative abundance is negatively associated with measures of variability and has a stronger effect on variability than does absolute biomass, suggesting that it is feasible to detect differences in bacterial populations in very low-biomass samples. Further, by quantifying the effect of biomass and relative abundance on compositional variability, we developed a tool for defining the expected variance in a given microbiome study.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biomassa , DNA Bacteriano/genética , Estudos de Avaliação como Assunto , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Filogenia
8.
J Vis Exp ; (133)2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29630048

RESUMO

Studies of microbial communities have become widespread with the development of relatively inexpensive, rapid, and high throughput sequencing. However, as with all these technologies, reproducible results depend on a laboratory workflow that incorporates appropriate precautions and controls. This is particularly important with low-biomass samples where contaminating bacterial DNA can generate misleading results. This article details a semi-automated workflow to identify microbes from human breast milk samples using targeted sequencing of the 16S ribosomal RNA (rRNA) V4 region on a low- to mid-throughput scale. The protocol describes sample preparation from whole milk including: sample lysis, nucleic acid extraction, amplification of the V4 region of the 16S rRNA gene, and library preparation with quality control measures. Importantly, the protocol and discussion consider issues that are salient to the preparation and analysis of low-biomass samples including appropriate positive and negative controls, PCR inhibitor removal, sample contamination by environmental, reagent, or experimental sources, and experimental best practices designed to ensure reproducibility. While the protocol as described is specific to human milk samples, it is adaptable to numerous low- and high-biomass sample types, including samples collected on swabs, frozen neat, or stabilized in a preservation buffer.


Assuntos
Leite Humano/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA/métodos , Humanos , Reprodutibilidade dos Testes
9.
JAMA Pediatr ; 171(7): 647-654, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28492938

RESUMO

Importance: Establishment of the infant microbiome has lifelong implications on health and immunity. Gut microbiota of breastfed compared with nonbreastfed individuals differ during infancy as well as into adulthood. Breast milk contains a diverse population of bacteria, but little is known about the vertical transfer of bacteria from mother to infant by breastfeeding. Objective: To determine the association between the maternal breast milk and areolar skin and infant gut bacterial communities. Design, Setting, and Participants: In a prospective, longitudinal study, bacterial composition was identified with sequencing of the 16S ribosomal RNA gene in breast milk, areolar skin, and infant stool samples of 107 healthy mother-infant pairs. The study was conducted in Los Angeles, California, and St Petersburg, Florida, between January 1, 2010, and February 28, 2015. Exposures: Amount and duration of daily breastfeeding and timing of solid food introduction. Main Outcomes and Measures: Bacterial composition in maternal breast milk, areolar skin, and infant stool by sequencing of the 16S ribosomal RNA gene. Results: In the 107 healthy mother and infant pairs (median age at the time of specimen collection, 40 days; range, 1-331 days), 52 (43.0%) of the infants were male. Bacterial communities were distinct in milk, areolar skin, and stool, differing in both composition and diversity. The infant gut microbial communities were more closely related to an infant's mother's milk and skin compared with a random mother (mean difference in Bray-Curtis distances, 0.012 and 0.014, respectively; P < .001 for both). Source tracking analysis was used to estimate the contribution of the breast milk and areolar skin microbiomes to the infant gut microbiome. During the first 30 days of life, infants who breastfed to obtain 75% or more of their daily milk intake received a mean (SD) of 27.7% (15.2%) of the bacteria from breast milk and 10.3% (6.0%) from areolar skin. Bacterial diversity (Faith phylogenetic diversity, P = .003) and composition changes were associated with the proportion of daily breast milk intake in a dose-dependent manner, even after the introduction of solid foods. Conclusions and Relevance: The results of this study indicate that bacteria in mother's breast milk seed the infant gut, underscoring the importance of breastfeeding in the development of the infant gut microbiome.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Leite Humano/microbiologia , Mamilos/microbiologia , Aleitamento Materno , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Mães , Filogenia , Estudos Prospectivos , Análise de Sequência de RNA/métodos
10.
Cytoskeleton (Hoboken) ; 67(8): 535-44, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20607860

RESUMO

Targeting of the PI3K (phosphoinositide3-kinase)/Akt/mTOR pathway in human ovarian cancer cells is a promising novel therapeutic strategy. We investigated the effects of cisplatin and the PI3K inhibitor LY294002 on invasion, migration and the expression of essential matrix metalloproteinases (MMPs) in ovarian cancer cells. SKOV3, OVCAR5 and IGROV1 human ovarian cancer cell lines were treated with cisplatin, LY294002 and a combination of both drugs. Invasion and migration of treated cells was assessed using Matrigel and uncoated PET membrane assays. Expression levels of pro-MMP2, MMP2, TIMP1, TIMP2 and MT1-MMP were determined using Western Blotting. Gel zymography was used to quantitate the functional levels of active MMP2. All three cell lines showed significantly reduced invasion and migration after treatment with cisplatin, LY294002, and the combination of both drugs compared to untreated controls. In SKOV3 cells, cisplatin alone and in combination with LY294002 resulted in a 6.3 and 7.1-fold reduction in the total amount of activated MMP2. TIMP1 expression decreased by 5.0, 6.6 and 28.4-fold with cisplatin, LY294002 and the combination respectively (P < 0.05). In contrast, only cisplatin and the combination of both drugs resulted in a significant, 3.7 and 5.1-fold reduction in the level of TIMP2. Expression levels of MT1-MMP remained unchanged. These observations were corroborated in IGROV1 cell lines that showed similar changes of activated MMP2 and TIMP2 expression, but no significant decrease in TIMP1 levels. Our data suggests that inhibition of ovarian cancer cell motility is mediated via down-regulation of activated MMP2, TIMP1 and TIMP2 expression under these treatment conditions.


Assuntos
Cromonas/farmacologia , Cisplatino/farmacologia , Metaloproteinase 2 da Matriz/biossíntese , Morfolinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/enzimologia , Inibidores de Fosfoinositídeo-3 Quinase , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-2/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...