Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Pharmacol ; 96: 1-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858770

RESUMO

In a dynamic environment, organisms must constantly mount an adaptive response to new environmental conditions in order to survive. Novel patterns of gene expression, driven by attendant changes in chromatin architecture, aid in adaptation and survival. Critical mechanisms in the control of gene transcription govern new spatiotemporal chromatin-chromatin interactions that make regulatory DNA elements accessible to the transcription factors that control the response. Consequently, agents that disrupt chromatin structure are likely to have a direct impact on the transcriptional programs of cells and organisms and to drive alterations in fundamental physiological processes. In this regard, hexavalent chromium (Cr(VI)) is of special interest because it interacts directly with cellular proteins, DNA, and other macromolecules, and is likely to upset cell functions that may cause generalized damage to the organism. Here, we will highlight chromium-mediated mechanisms that disrupt chromatin architecture and discuss how these mechanisms are integral to its carcinogenic properties. Emerging evidence indicates that Cr(VI) targets euchromatin, particularly in genomic locations flanking the binding sites of the essential transcription factors CTCF and AP1, and, in so doing, they disrupt nucleosomal architecture. Ultimately, the ensuing changes, if occurring in critical regulatory domains, may establish a new chromatin state, either toxic or adaptive, that will be governed by the corresponding gene transcription changes in key biological processes associated with that state.


Assuntos
Cromatos , Cromo , Humanos , Cromatina , Carcinogênese
2.
Cell Biol Toxicol ; 39(4): 1657-1676, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36029422

RESUMO

Key regulatory decisions during cleavage divisions in mammalian embryogenesis determine the fate of preimplantation embryonic cells. Single-cell RNA sequencing of early-stage-2-cell, 4-cell, and 8-cell-blastomeres show that the aryl hydrocarbon receptor (AHR), traditionally considered as an environmental sensor, directs blastomere differentiation. Disruption of AHR functions in Ahr knockout embryos or in embryos from dams exposed to dioxin, the prototypic xenobiotic AHR agonist, significantly impairs blastocyst formation, causing repression and loss of transcriptional heterogeneity of OCT4 and CDX2 and incidence of nonspecific downregulation of pluripotency. Trajectory-the path of differentiation-and gene variability analyses further confirm that deregulation of OCT4 functions and changes of transcriptional heterogeneity resulting from disruption of AHR functions restrict the emergence of differentiating blastomeres in 4-cell embryos. It appears that AHR directs the differentiation of progenitor blastomeres and that disruption of preimplantation AHR functions may significantly perturb embryogenesis leading to long-lasting conditions at the heart of disease in offspring's adulthood.


Assuntos
Blastômeros , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Diferenciação Celular , Desenvolvimento Embrionário , Mamíferos , Receptores de Hidrocarboneto Arílico/genética
3.
Semin Cancer Biol ; 76: 54-60, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34274487

RESUMO

Accessibility of DNA elements and the orchestration of spatiotemporal chromatin-chromatin interactions are critical mechanisms in the regulation of gene transcription. Thus, in an ever-changing milieu, cells mount an adaptive response to environmental stimuli by modulating gene expression that is orchestrated by coordinated changes in chromatin architecture. Correspondingly, agents that alter chromatin structure directly impact transcriptional programs in cells. Heavy metals, including hexavalent chromium (Cr(VI)), are of special interest because of their ability to interact directly with cellular protein, DNA and other macromolecules, resulting in general damage or altered function. In this review we highlight the chromium-mediated mechanisms that promote disruption of chromatin architecture and how these processes are integral to its carcinogenic properties. Emerging evidence shows that Cr(VI) targets nucleosomal architecture in euchromatin, particularly in genomic locations flanking binding sites of the essential transcription factors CTCF and AP1. Ultimately, these changes contribute to an altered chromatin state in critical gene regulatory regions, which disrupts gene transcription in functionally relevant biological processes.


Assuntos
Cromatina/efeitos dos fármacos , Cromo/efeitos adversos , Transcrição Gênica/efeitos dos fármacos , Animais , Carcinogênese/induzido quimicamente , Humanos
4.
Toxicol Sci ; 182(1): 1-9, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34009372

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor well-known for its adaptive role as a sensor of environmental toxicants and mediator of the metabolic detoxification of xenobiotic ligands. In addition, a growing body of experimental data has provided indisputable evidence that the AHR regulates critical functions of cell physiology and embryonic development. Recent studies have shown that the naïve AHR-that is, unliganded to xenobiotics but activated endogenously-has a crucial role in maintenance of embryonic stem cell pluripotency, tissue repair, and regulation of cancer stem cell stemness. Depending on the cellular context, AHR silences the expression of pluripotency genes Oct4 and Nanog and potentiates differentiation, whereas curtailing cellular plasticity and stemness. In these processes, AHR-mediated contextual responses and outcomes are dictated by changes of interacting partners in signaling pathways, gene networks, and cell-type-specific genomic structures. In this review, we focus on AHR-mediated changes of genomic architecture as an emerging mechanism for the AHR to regulate gene expression at the transcriptional level. Collective evidence places this receptor as a physiological hub connecting multiple biological processes whose disruption impacts on embryonic development, tissue repair, and maintenance or loss of stemness.


Assuntos
Regulação da Expressão Gênica , Receptores de Hidrocarboneto Arílico , Diferenciação Celular , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Humanos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
5.
Epigenetics ; 16(12): 1361-1376, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33319643

RESUMO

Hexavalent chromium compounds are well-established respiratory carcinogens to which humans are commonly exposed in industrial and occupational settings. In addition, natural and anthropogenic sources of these compounds contribute to the exposure of global populations through multiple routes, including dermal, ingestion and inhalation that elevate the risk of cancer by largely unresolved mechanisms. Cr(VI) has genotoxic properties that include ternary adduct formation with DNA, increases in DNA damage, mostly by double-strand break formation, and altered transcriptional responses. Our previous work using ATAC-seq showed that CTCF motifs were enriched in Cr(VI)-dependent differentially accessible chromatin, suggesting that CTCF, a key transcription factor responsible for the regulation of the transcriptome, might be a chromium target. To test this hypothesis, we investigated the effect of Cr(VI) treatment on the binding of CTCF to its cognate sites and ensuing changes in transcription-related histone modifications. Differentially bound CTCF sites were enriched by Cr(VI) treatment within transcription-related regions, specifically transcription start sites and upstream genic regions. Functional annotation of the affected genes highlighted biological processes previously associated with Cr(VI) exposure. Notably, we found that differentially bound CTCF sites proximal to the promoters of this subset of genes were frequently associated with the active histone marks H3K27ac, H3K4me3, and H3K36me3, in agreement with the concept that Cr(VI) targets CTCF in euchromatic regions of the genome. Our results support the conclusion that Cr(VI) treatment promotes the differential binding of CTCF to its cognate sites in genes near transcription-active boundaries, targeting these genes for dysregulation.


Assuntos
Metilação de DNA , Eucromatina , Cromatina , Cromo , Humanos
6.
Exp Biol Med (Maywood) ; 244(9): 752-757, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30935235

RESUMO

IMPACT STATEMENT: This mini-review highlights current evidence on the mechanisms through which hexavalent chromium (Cr(VI)) disrupts transcriptional regulation, an emerging area of interest and one of the central processes by which chromium induces carcinogenesis. Several studies have shown that Cr(VI) causes widespread DNA damage and disrupts epigenetic signatures, suggesting that chromatin may be a direct Cr(VI) target. The findings discussed here suggest that Cr(VI) disrupts transcriptional regulation by causing genomic architecture changes.


Assuntos
Cromatina/efeitos dos fármacos , Cromo/toxicidade , Transcrição Gênica/efeitos dos fármacos , Animais , Cromo/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , Humanos , MicroRNAs/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...