Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 8(12): 2454-2465, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32108210

RESUMO

Tissue response to intestinal injury or disease releases pro-inflammatory host stress signals triggering microbial shift to pathogenic phenotypes. One such phenotype is increased protease production resulting in collagen degradation and activation of host matrix metalloproteinases contributing to tissue breakdown. We have shown that surgical injury depletes local intestinal phosphate concentration triggering bacterial virulence and that polyphosphate replenishment attenuates virulence and collagenolytic activity. Mechanistic studies of bacterial and host protease expression contributing to tissue breakdown are difficult to achieve in vivo necessitating the development of novel in vitro tissue models. Common techniques for screening in vitro protease activity, including gelatin zymography or fluorogenic protease-sensitive substrate kits, do not readily translate to 3D matrix degradation. Here, we report the application of an in vitro assay in which collagenolytic pathogens are cultured in the presence of a proteolytically degradable poly(ethylene) glycol scaffold and a non-degradable phosphate and/or polyphosphate nanocomposite hydrogel matrix. This in vitro platform enables quantification of pathogen-induced matrix degradation and screening of sustained release of phosphate-based therapeutic efficacy in attenuating protease expression. To evaluate matrix degradation as a function of bacterial enzyme levels secreted, we also present a novel method to quantify hydrogel degradation. This method involves staining protease-sensitive hydrogels with Sirius red dye to correlate absorbance of the degraded gel solution with hydrogel weight. This assay enables continuous monitoring and greater accuracy of hydrogel degradation kinetics compared to gravimetric measurements. Combined, the proposed in vitro platform and the presented degradation assay provide a novel strategy for screening efficacy of therapeutics in attenuating bacterial protease-induced matrix degradation.


Assuntos
Matriz Extracelular/metabolismo , Hidrogéis/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Peptídeo Hidrolases/metabolismo , Fosfatos/metabolismo , Polietilenoglicóis/metabolismo , Avaliação Pré-Clínica de Medicamentos , Enterococcus faecalis/enzimologia , Enterococcus faecalis/crescimento & desenvolvimento , Humanos , Hidrogéis/química , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/isolamento & purificação , Tamanho da Partícula , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Fosfatos/química , Polietilenoglicóis/química , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Serratia marcescens/enzimologia , Serratia marcescens/crescimento & desenvolvimento , Propriedades de Superfície , Engenharia Tecidual
2.
Artigo em Inglês | MEDLINE | ID: mdl-31297368

RESUMO

Intestinal disease or surgical intervention results in local changes in tissue and host-derived factors triggering bacterial virulence. A key phenotype involved in impaired tissue healing is increased bacterial collagenase expression which degrades intestinal collagen. Antibiotic administration is ineffective in addressing this issue as it inadvertently eliminates normal flora while allowing pathogenic bacteria to "bloom" and acquire antibiotic resistance. Compounds that could attenuate collagenase production while allowing commensal bacteria to proliferate normally would offer major advantages without the risk of the emergence of resistance. We have previously shown that intestinal phosphate depletion in the surgically stressed host is a major cue that triggers P. aeruginosa virulence which is suppressed under phosphate abundant conditions. Recent findings indicate that orally administered polyphosphate, hexametaphosphate, (PPi) suppresses collagenase, and biofilm production of P. aeruginosa and S. marcescens in animal models of intestinal injury but does not attenuate E. faecalis induced collagenolytic activity (Hyoju et al., 2017). Systemic administration of phosphates, however, is susceptible to rapid clearance. Given the diversity of collagenase producing bacteria and the variation of phosphate metabolism among microbial species, a combination therapy involving different phosphate compounds may be required to attenuate pathogenic phenotypes. To address these barriers, we present a drug delivery approach for sustained release of phosphates from poly(ethylene) glycol (PEG) hydrogel nanoparticles. The efficacy of monophosphate (Pi)- and PPi-loaded NPs (NP-Pi and NP-PPi, respectively) and a combination treatment (NP-Pi + NP-PPi) in mitigating collagenase and biofilm production of gram-positive and gram-negative pathogens expressing high collagenolytic activity was investigated. NP-PPi was found to significantly decrease collagenase and biofilm production of S. marcescens and P. aeruginosa. Treatment with either NP-Pi or NP-Pi + NP-PPi resulted in more prominent decreases in E. faecalis collagenase compared to NP-PPi alone. The combination treatment was also found to significantly reduce P. aeruginosa collagenase production. Finally, significant attenuation in biofilm dispersal was observed with NP-PPi or NP-Pi + NP-PPi treatment across all test pathogens. These findings suggest that sustained release of different forms of phosphate confers protection against gram-positive and gram-negative pathogens, thereby providing a promising treatment to attenuate expression of tissue-disruptive bacterial phenotypes without eradicating protective flora over the course of intestinal healing.

3.
Ann Biomed Eng ; 45(4): 1058-1068, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27761766

RESUMO

The human gastrointestinal tract is the primary site of colonization of multidrug resistant pathogens and the major source of life-threatening complications in critically ill and immunocompromised patients. Eradication measures using antibiotics carry further risk of antibiotic resistance. Furthermore, antibiotic treatment can adversely shift the intestinal microbiome toward domination by resistant pathogens. Therefore, approaches directed to prevent replacement of health promoting microbiota with resistant pathogens should be developed. The use of non-microbicidal drugs to create microenvironmental conditions that suppress virulence of pathogens is an attractive strategy to minimize the negative consequences of intestinal microbiome disruption. We have previously shown that phosphate is depleted in the intestinal tract following surgical injury, that this depletion is a major "cue" that triggers bacterial virulence, and that the maintenance of phosphate abundance prevents virulence expression. However, the use of inorganic phosphate may not be a suitable agent to deliver to the site of the host-pathogen interaction since it is readily adsorbed in small intestine. Here we propose a novel drug delivery approach that exploits the use of nanoparticles that allow for prolonged release of phosphates. We have synthesized phosphate (Pi) and polyphosphate (PPi) crosslinked poly (ethylene) glycol (PEG) hydrogel nanoparticles (NP-Pi and NP-PPi, respectively) that result in sustained delivery of Pi and PPi. NP-PPi demonstrated more prolonged release of PPi as compared to the release of Pi from NP-Pi. In vitro studies indicate that free PPi as well NP-PPi are effective compounds for suppressing pyoverdin and pyocyanin production, two global virulence systems of virulence of P. aeruginosa. These studies suggest that sustained release of polyphosphate from NP-PPi can be exploited as a target for virulence suppression of lethal pathogenic phenotypes in the gastrointestinal tract.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Enteropatias , Nanopartículas/química , Oligopeptídeos/biossíntese , Polietilenoglicóis , Polifosfatos , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Fatores de Virulência/biossíntese , Hidrogéis/química , Hidrogéis/farmacologia , Enteropatias/tratamento farmacológico , Enteropatias/metabolismo , Enteropatias/microbiologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polifosfatos/química , Polifosfatos/farmacologia , Pseudomonas aeruginosa/patogenicidade
4.
PLoS One ; 7(4): e34883, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514685

RESUMO

The gut during critical illness represents a complex ecology dominated by the presence of healthcare associated pathogens, nutrient scarce conditions, and compensatory host stress signals. We have previously identified key environmental cues, opioids and phosphate depletion that independently activate the virulence of Pseudomonas aeruginosa. Opioids induce quinolone signal production (PQS), whereas phosphate depletion leads to a triangulated response between MvfR-PQS, pyoverdin, and phosphosensory/phosphoregulatory systems (PstS-PhoB). Yet how P. aeruginosa manages its response to opioids during nutrient scarce conditions when growth is limited and a quorum is unlikely to be achieved is important in the context of pathogenesis in gut during stress. To mimic this environment, we created nutrient poor conditions and exposed P. aeruginosa PAO1 to the specific k-opioid receptor agonist U-50,488. Bacterial cells exposed to the k-opioid expressed a striking increase in virulence- and multi-drug resistance-related genes that correlated to a lethal phenotype in C. elegans killing assays. Under these conditions, HHQ, a precursor of PQS, rather than PQS itself, became the main inducer for pqsABCDE operon expression. P. aeruginosa virulence expression in response to k-opioids required PqsE since ΔPqsE was attenuated in its ability to activate virulence- and efflux pumps-related genes. Extracellular inorganic phosphate completely changed the transcriptional response of PAO1 to the k- opioid preventing pqsABCDE expression, the activation of multiple virulence- and efflux pumps-related genes, and the ability of P. aeruginosa to kill C. elegans. These results indicate that when P. aeruginosa senses resource abundance in the form of phosphate, it overrides its response to compensatory host signals such as opioids to express a virulent and lethal phenotype. These studies confirm a central role for phosphate in P. aeruginosa virulence that might be exploited to design novel anti- virulence strategies.


Assuntos
Analgésicos Opioides/farmacologia , Fosfatos/farmacologia , Pseudomonas aeruginosa/patogenicidade , Animais , Caenorhabditis elegans/microbiologia , Microscopia Eletrônica de Transmissão , Oligopeptídeos/metabolismo , Fosfatos/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestrutura , Quinolonas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência/efeitos dos fármacos , Virulência/genética
5.
BMC Microbiol ; 11: 212, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21943078

RESUMO

BACKGROUND: During extreme physiological stress, the intestinal tract can be transformed into a harsh environment characterized by regio- spatial alterations in oxygen, pH, and phosphate concentration. When the human intestine is exposed to extreme medical interventions, the normal flora becomes replaced by pathogenic species whose virulence can be triggered by various physico-chemical cues leading to lethal sepsis. We previously demonstrated that phosphate depletion develops in the mouse intestine following surgical injury and triggers intestinal P. aeruginosa to express a lethal phenotype that can be prevented by oral phosphate ([Pi]) supplementation. RESULTS: In this study we examined the role of pH in the protective effect of [Pi] supplementation as it has been shown to be increased in the distal gut following surgical injury. Surgically injured mice drinking 25 mM [Pi] at pH 7.5 and intestinally inoculated with P. aeruginosa had increased mortality compared to mice drinking 25 mM [Pi] at pH 6.0 (p < 0.05). This finding was confirmed in C. elegans. Transcriptional analysis of P. aeruginosa demonstrated enhanced expression of various genes involved in media alkalization at pH 6.0 and a global increase in the expression of all iron-related genes at pH 7.5. Maintaining the pH at 6.0 via phosphate supplementation led to significant attenuation of iron-related genes as demonstrated by microarray and confirmed by QRT-PCR analyses. CONCLUSION: Taken together, these data demonstrate that increase in pH in distal intestine of physiologically stressed host colonized by P. aeruginosa can lead to the expression of siderophore-related virulence in bacteria that can be prevented without providing iron by maintaining local phosphate abundance at pH 6.0. This finding is particularly important as provision of exogenous iron has been shown to have untoward effects when administered to critically ill and septic patients. Given that phosphate, pH, and iron are near universal cues that dictate the virulence status of a broad range of microorganisms relevant to serious gut origin infection and sepsis in critically ill patients, the maintenance of phosphate and pH at appropriate physiologic levels to prevent virulence activation in a site specific manner can be considered as a novel anti-infective therapy in at risk patients.


Assuntos
Mucosa Intestinal/metabolismo , Intestinos/química , Fosfatos/metabolismo , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Sepse/prevenção & controle , Sideróforos/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Ferro/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Sepse/metabolismo , Sepse/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...