Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 594: 110051, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38489915

RESUMO

This research focuses on analyzing the dynamics of neutralizing antibody (nAbs) titers against type 5 adenovirus (Ad5) in the adult population of Russia following vaccination against the novel coronavirus infection with recombinant adenovirus type-5 COVID-19 vaccine (CanSino Biologics, China). The impact of the Ad5 vector on nAb titers was investigated using 302 blood serum samples from individuals who received a single dose of the Ad5-nCoV vector vaccine. The research revealed that 33.8% of adults in Russia had pre-existing anti-Ad5 nAbs before the pandemic. Notably, 40% of vaccinated individuals did not exhibit an increase in nAbs titers upon receiving the Ad5-based vaccine. However, in the group with no or low titers of anti-Ad5 nAbs (1:10-1:40), a significant 8-16-fold increase in nAb titers to Ad5 was observed.


Assuntos
Infecções por Adenoviridae , Adenoviridae , Adulto , Humanos , Adenoviridae/genética , Vacinas contra COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinação
2.
Biometals ; 36(3): 437-462, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36334191

RESUMO

The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves dysregulations of iron metabolism, and although the mechanism of this pathology is not yet fully understood, correction of iron metabolism pathways seems a promising pharmacological target. The previously observed effect of inhibiting SARS-CoV-2 infection by ferristatin II, an inducer of transferrin receptor 1 (TfR1) degradation, prompted the study of competition between Spike protein and TfR1 ligands, especially lactoferrin (Lf) and transferrin (Tf). We hypothesized molecular mimicry of Spike protein as cross-reactivity of Spike-specific antibodies with Tf and Lf. Thus, strong positive correlations (R2 > 0.95) were found between the level of Spike-specific IgG antibodies present in serum samples of COVID-19-recovered and Sputnik V-vaccinated individuals and their Tf-binding activity assayed with peroxidase-labeled anti-Tf. In addition, we observed cross-reactivity of Lf-specific murine monoclonal antibody (mAb) towards the SARS-CoV-2 Spike protein. On the other hand, the interaction of mAbs produced to the receptor-binding domain (RBD) of the Spike protein with recombinant RBD protein was disrupted by Tf, Lf, soluble TfR1, anti-TfR1 aptamer, as well as by peptides RGD and GHAIYPRH. Furthermore, direct interaction of RBD protein with Lf, but not Tf, was observed, with affinity of binding estimated by KD to be 23 nM and 16 nM for apo-Lf and holo-Lf, respectively. Treatment of Vero E6 cells with apo-Lf and holo-Lf (1-4 mg/mL) significantly inhibited SARS-CoV-2 replication of both Wuhan and Delta lineages. Protective effects of Lf on different arms of SARS-CoV-2-induced pathogenesis and possible consequences of cross-reactivity of Spike-specific antibodies are discussed.


Assuntos
COVID-19 , Lactoferrina , Mimetismo Molecular , Glicoproteína da Espícula de Coronavírus , Transferrina , Animais , Humanos , Camundongos , Ferro/metabolismo , Lactoferrina/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Transferrina/química
3.
Biochimie ; 190: 50-56, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34273416

RESUMO

The influenza NS1 protein is involved in suppression of the host immune response. Recently, there is growing evidence that prion-like protein aggregation plays an important role in cellular signaling and immune responses. In this work, we obtained a recombinant, influenza A NS1 protein and showed that it is able to form amyloid-like fibrils in vitro. Using proteolysis and subsequent mass spectrometry, we showed that regions resistant to protease hydrolysis highly differ between the native NS1 form (NS1-N) and fibrillar form (NS1-F); this indicates that significant structural changes occur during fibril formation. We also found a protein fragment that is capable of inducing the process of fibrillogenesis at 37 °C. The discovery of the ability of NS1 to form amyloid-like fibrils may be relevant to uncovering relationships between influenza A infection and modulation of the immune response.


Assuntos
Amiloide/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Vermelho Congo/química , Vermelho Congo/metabolismo , Cinética , Microscopia de Força Atômica , Microscopia Eletrônica , Modelos Moleculares , Agregados Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas não Estruturais Virais/química
4.
J Biomol Struct Dyn ; 39(12): 4375-4384, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32490728

RESUMO

Two influenza A nucleoprotein variants (wild-type: G102R; and mutant: G102R and E292G) were studied with regard to macro-molecular interactions in oligomeric form (24-mers). The E292G mutation has been previously shown to provide cold adaptation. Molecular dynamics simulations of these complexes and trajectory analysis showed that the most significant difference between the obtained models was distance between nucleoprotein complex strands. The isolated complexes of two ribonucleoprotein variants were characterized by transmission electron microscopy and differential scanning fluorimetry (DSF). Presence of the E292G substitution was shown by DSF to affect nucleoprotein complex melting temperature. In the filament interface peptide model, it was shown that the peptide corresponding in primary structure to the wild-type NP (SGYDFEREGYS) is prone to temperature-dependent self-association, unlike the peptide corresponding to E292G substitution (SGYDFGREGYS). It was also shown that the SGYDFEREGYS peptide is capable of interacting with a monomeric nucleoprotein (wild type); this interaction's equilibrium dissociation constant is five orders of magnitude lower than for the SGYDFGREGYS peptide. Using small-angle neutron scattering (SANS), the supramolecular structures of isolated complexes of these proteins were studied at temperatures of 15, 32, and 37 °C. SANS data show that the structures of the studied complexes at elevated temperature differ from the rod-like particle model and react differently to temperature changes. The data suggest that the mechanism behind cold adaptation with E292G is associated with a weakening of the interaction between strands of the ribonucleoprotein complex and, as a result, the appearance of inter-chain interface flexibility necessary for complex function at low temperature.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus da Influenza A , Influenza Humana , Adaptação Fisiológica , Temperatura Baixa , Humanos , Vírus da Influenza A/genética , Nucleoproteínas/genética
5.
Vopr Virusol ; 63(2): 68-76, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36494924

RESUMO

One of the main problems in the area of influenza prophylaxis and pandemic prevention is the development of cross-reactive vaccines, i.e. vaccines directed against all subtypes of human influenza viruses. Such vaccines are being developed in many countries for more than 10 years. A number of vaccines are presently undergoing clinical trials. We created Uniflu candidate vaccine based on recombinant HBc4M2e protein consisting of 4 tandem-connected copies of the highly conserved ectodomain of M2 protein of the influenza A virus. These 4 copies were genetically fused to the carrier protein, namely hepatitis B core antigen. Commercially available Derinat was used as adjuvant in the candidate vaccine. Preclinical studies on laboratory animals (mice, ferrets) demonstrated that immunization with Uniflu leads to significantly higher level of specific immunoglobulins in the blood and bronchoalveolar lavages. Moreover, it produces immunoglobulins belonging to subtype IgG2a that is the most important mediator of antibody-dependent cytotoxicity. The vaccine under review stimulates the proliferation of T-lymphocytes, as well as the formation of CD4+ and CD8+ T-cells synthesizing ɣ-IFN. When infected with the lethal doses (5 LD50) of influenza A viruses of the subtypes H1N1, H2N2, H3N2, and H1N1pdm09, immunized animals typically developed mild form of illness. This kept them alive in 90-100% of cases, which demonstrated almost complete protection from death. Replication of the virus in the lungs of immunized mice was reduced by 1.8-4.8 log10. High immunogenicity of the vaccine, and reduced clinical symptoms following experimental infection, were demonstrated in ferrets as well. The developed recombinant vaccine Uniflu has high specific activity and cross-protection. Uniflu can be proposed as pre-pandemic vaccine, provided that it passes clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...