Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37836353

RESUMO

Metal-Organic CVD method (MOCVD) allows for deposition of ultrathin 2D transition metal dichalcogenides (TMD) films of electronic quality onto wafer-scale substrates. In this work, the effect of temperature on structure, chemical states, and electronic qualities of the MOCVD MoS2 films were investigated. The results demonstrate that the temperature increase in the range of 650 °C to 950 °C results in non-monotonic average crystallite size variation. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and Raman spectroscopy investigation has established the film crystal structure improvement with temperature increase in this range. At the same time, X-Ray photoelectron spectroscopy (XPS) method allowed to reveal non-stoichiometric phase fraction increase, corresponding to increased sulfur vacancies (VS) concentration from approximately 0.9 at.% to 3.6 at.%. Established dependency between the crystallite domains size and VS concentration suggests that these vacancies are form predominantly at the grain boundaries. The results suggest that an increased Vs concentration and enhanced charge carriers scattering at the grains' boundaries should be the primary reasons of films' resistivity increase from 4 kΩ·cm to 39 kΩ·cm.

2.
ACS Omega ; 8(19): 16579-16586, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214699

RESUMO

Heterogeneous nanostructures composed of metastable tetragonal 1T-MoS2 and stable hexagonal 2H-MoS2 phases are highly promising for a wide range of applications, including catalysis and ion batteries, due to the high electrical conductivity and catalytic activity of the 1T phase. However, a controllable synthesis of stabilized 1T-MoS2 films over the wafer-scale area is challenging. In this work, a metal-organic chemical vapor deposition process allowing us to obtain ultrathin MoS2 films containing both 1T and 2H phases and control their ratio through rhenium doping was suggested. As a result, Mo1-xRexS2 films with a 1T-MoS2 fraction up to ≈30% were obtained, which were relatively stable under normal conditions for a long time. X-ray photoelectron spectroscopy and Raman spectroscopy also indicated that the 1T-MoS2 phase fraction increased with rhenium concentration increase saturating at Re concentrations above 5 at. %. Also, its concentration was found to significantly affect the film resistivity. Thus, the resistivity of the film containing approximately 30% of the 1T phase was about 130 times lower than that of the film without the 1T phase.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234390

RESUMO

Atomically thin molybdenum disulfide (MoS2) is a promising channel material for next-generation thin-body field-effect transistors (FETs), which makes the development of methods allowing for its controllable synthesis over a large area an essential task. Currently, one of the cost-effective ways of its synthesis is the sulfurization of preliminary grown oxide- or metallic film. However, despite apparent progress in this field, the electronic quality of the obtained MoS2 is inferior to that of exfoliated samples, making the detailed investigation of the sulfurized films' properties of great interest. In this work, we synthesized continuous MoS2 films with a thickness of ≈2.2 nm via the sulfurization of an atomic-layer-deposited MoO3 layer. X-ray photoelectron spectroscopy, transmission electron microscopy, and Raman spectroscopy indicated the appropriate chemical composition and microcrystalline structure of the obtained MoS2 films. The semiconductor quality of the synthesized films was confirmed by the fabrication of a field-effect transistor (FET) with an Ion/Ioff ratio of ≈40, which was limited primarily by the high contact resistance. The Schottky barrier height at the Au/MoS2 interface was found to be ≈1.2 eV indicating the necessity of careful contact engineering. Due to its simplicity and cost-effectiveness, such a technique of MoS2 synthesis still appears to be highly attractive for its applications in next-generation microelectronics. Therefore, further research of the electronic properties of films obtained via this technique is required.

4.
ACS Omega ; 6(50): 34429-34437, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963928

RESUMO

Ultrathin WS2 films are promising functional materials for electronic and optoelectronic devices. Therefore, their synthesis over a large area, allowing control over their thickness and structure, is an essential task. In this work, we investigated the influence of atomic layer deposition (ALD)-grown WO3 seed-film thickness on the structural and electrical properties of WS2 nanosheets obtained via a sulfurization technique. Transmission electron microscopy indicated that the thinnest (1.9 nm) film contains rather big (up to 50 nm) WS2 grains in the amorphous matrix. The signs of incomplete sulfurization, namely, oxysulfide phase presence, were found by X-ray photoemission spectroscopy analysis. The increase in the seed-film thickness of up to 4.7 nm resulted in a visible grain size decrease down to 15-20 nm, which was accompanied by defect suppression. The observed structural evolution affected the film resistivity, which was found to decrease from ∼106 to 103 (µΩ·cm) within the investigated thickness range. These results show that the thickness of the ALD-grown seed layer may strongly affect the resultant WS2 structure and properties. Most valuably, it was shown that the growth of the thinnest WS2 film (3-4 monolayers) is most challenging due to the amorphous intergrain phase formation, and further investigations focused on preventing the intergrain phase formation should be conducted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...