Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6703): 1424-1428, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38935705

RESUMO

Methylaluminoxane (MAO) is used as a precatalyst activator for million ton-scale production of commercial polyolefins, but its precise structure and associated activation mechanisms have been a fundamental research puzzle for more than 40 years. We report here the crystallographic characterization of an active MAO component, which reveals a discrete two-dimensional sheet cluster [Al33O26(CH3)47][Al(CH3)3]2 featuring two trimethylaluminum units, Al(CH3)3, coordinated to two unsaturated aluminum sites. Our structural data are consistent with the hypothesis that the active sites bear coordinated Al(CH3)3 and provide [Al(CH3)2]+ for precatalyst activation. Quantum chemical calculations revealed the most preferred sites for [Al(CH3)2]+ abstraction (a change in Gibbs free energy of 0.0 kilocalories per mole). Olefin polymerization tests on metallocenes activated with the crystallized MAO show higher activities than with the commercial MAO.

2.
Acc Chem Res ; 51(6): 1541-1549, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29874040

RESUMO

The need for advanced energy storage technologies demands the development of new functional materials. Novel carbon-rich and carbon-based materials of different structural topologies attract significant attention in this regard. Attractive systems include a unique class of bowl-shaped polycyclic aromatic hydrocarbons that map onto fullerene surfaces and are thus often referred to as fullerene fragments, buckybowls, or π-bowls. Importantly, carbon bowls are able to acquire multiple electrons in stepwise reduction reactions producing sets of successively reduced carbanions. The resulting negatively charged π-bowls exhibit unique supramolecular assembly and metal intercalation patterns that only recently have begun to be uncovered. First, we have resolved the long-standing mystery behind the supramolecular structure formed by a highly reduced fullerene fragment called corannulene (C20H104-) with multiple lithium ions, using X-ray crystallography coupled with NMR spectroscopy and theoretical calculations. This work provided a new paradigm for lithium ion intercalation between the curved carbon π-surfaces and facilitated understanding of the lithium ion storage mechanism in carbonaceous matrices. Next, we have initiated a new research direction, an investigation of the mixed alkali metal reduction reactions using bowl-shaped corannulene as a remarkable multielectron reservoir and unique ligand with open convex and concave π-surfaces. As a result, we have revealed the cooperative effect of lithium with heavier Group 1 metals in reduction and self-assembly processes of corannulene. Moreover, we have discovered a new class of organometallic supramolecules having heterometallic cores with high nuclearity and charge such as Li3M36+ and LiM56+ (M = K, Rb, and Cs) sandwiched between two tetrareduced corannulene decks. The resulting triple-decker supramolecular assemblies, fully characterized by X-ray diffraction and spectroscopic methods, were found to exhibit a record ability of the highly charged corannulene π-surfaces to be fully engaged in intercalation of multiple metal ions. Based on this unique ability, curved π-ligands with extended carbon frameworks are expected to show remarkable potential for alkali metal storage compared to flat polycyclic arenes. Notably, a previously unseen mode of internal lithium binding revealed in the heterobimetallic sandwiches is accompanied by unprecedented negative shifts (up to -25 ppm) in 7Li NMR spectra. Based on in-depth analysis of NMR data, augmented by DFT calculations, we have rationalized the observed experimental trends and proposed the mechanism of stepwise alkali metal substitution reactions. Furthermore, we have correlated the origin of the record 7Li NMR shifts with unique electronic structures of these novel supramolecular aggregates. Herein we present comprehensive analysis of unusual structural and electronic features of remarkable heterometallic self-assemblies formed by tetrareduced corannulene, using a wealth of our recent experimental and computational results. This work uncovers unique potential of highly negatively charged bowl-shaped π-ligands for new supramolecular chemistry and materials chemistry applications.

3.
Angew Chem Int Ed Engl ; 57(21): 6171-6175, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29504700

RESUMO

Designed site-directed dimerization of the monoanion radicals of a π-bowl in the solid state is reported. Dibenzo[a,g]corannulene (C28 H14 ) was selected based on the asymmetry of the charge/spin localization in the C28 H14.- anion. Controlled one-electron reduction of C28 H14 with Cs metal in diglyme resulted in crystallization of a new dimer, [{Cs+ (diglyme)}2 (C28 H14 -C28 H14 )2- ] (1), as revealed by single crystal X-ray diffraction study performed in a broad range of temperatures. The C-C bond length between two C28 H14.- bowls (1.560(8) Å) measured at -143 °C does not significantly change upon heating of the crystal to +67 °C. The single σ-bond character of the C-C linker is confirmed by calculations. The trans-disposition of two bowls in 1 is observed with the torsion angles around the central C-C bond of 172.3(5)° and 173.5(5)°. A systematic theoretical evaluation of dimerization pathways of C28 H14.- radicals confirmed that the trans-isomer found in 1 is energetically favored.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/síntese química , Ânions/síntese química , Ânions/química , Dimerização , Radicais Livres/síntese química , Radicais Livres/química , Modelos Moleculares , Conformação Molecular , Hidrocarbonetos Policíclicos Aromáticos/química
4.
J Am Chem Soc ; 140(13): 4588-4595, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29359933

RESUMO

Molecular cerium complexes are a new class of tunable and energy-efficient visible- and UV-luminophores. Understanding and controlling the emission brightness and color are important for tailoring them for new and specialized applications. Herein, we describe the experimental and computational analyses for series of tris(guanidinate) (1-8, Ce{(R2N)C(N iPr)2}3, R = alkyl, silyl, or phenyl groups), guanidinate-amide [GA, A = N(SiMe3)2, G = (Me3Si)2NC(N iPr)2], and guanidinate-aryloxide (GOAr, OAr = 2,6-di- tert-butylphenoxide) cerium(III) complexes to understand and develop predictive capabilities for their optical properties. Structural studies performed on complexes 1-8 revealed marked differences in the steric encumbrance around the cerium center induced by various guanidinate ligand backbone substituents, a property that was correlated to photoluminescent quantum yield. Computational studies revealed that consecutive replacements of the amide and aryloxide ligands by guanidinate ligand led to less nonradiative relaxation of bright excited states and smaller Stokes shifts. The results establish a comprehensive structure-luminescence model for molecular cerium(III) luminophores in terms of both quantum yields and colors. The results provide a clear basis for the design of tunable, molecular, cerium-based, luminescent materials.

5.
Chemistry ; 23(71): 17923-17934, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-28799284

RESUMO

Synthetic methods for the coordination of the monoanionic bis[2-(diisopropylphosphino)-4-methylphenyl]amido (PNP) ligand framework to the cerium(III) cation have been developed and applied for the isolation of a series of {(PNP)Ce} and {(PNP)2 Ce} type complexes. The structures of the complexes were studied by X-ray diffraction and multinuclear NMR spectroscopy. We found that the cerium(III) ion can induce the elimination of one of the iPr groups at phosphorus to yield a new dianionic PNP tridentate framework (PNP-iPr ) featuring a phosphido-donor functionality, which is bound to the cerium ion with the shortest known Ce-P bond of 2.7884(14) Šfor molecular compounds. The reaction of the complex [(PNP)Ce{N(SiMe3 )2 }2 ] (1) with Ph2 CO gave the Ce-bound product of C-C coupling, - N(SiMe3 )SiMe2 CH2 -CPh2 O- , through the C-H bond activation of a SiMe3 group. 31 P NMR spectroscopy was used to estimate the presence of a vacant coordination position at the cerium ion in the CeIII -PNP complexes by the examination of the δ(31 P) shift recorded both in non-polar (C6 D6 ) and polar ([D8 ]THF) solvents. Moreover, 31 P NMR spectroscopy was also found to be a useful tool for the estimation of the Ce-P bond distances in {(PNP)CeIII } and {(PNP)2 CeIII } systems. Electrochemical and computational studies for 1 and its lanthanum analogue containing a redox-innocent metal center revealed the stabilization of the CeIII oxidation state by the PNP ligand.

6.
Chem Sci ; 8(4): 3137-3145, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507689

RESUMO

The first heterobimetallic sandwich-type aggregate formed by bowl-shaped corannulene trianion-radicals, C20H10˙3-, has been synthesized using mixed-metal reduction of C20H10. The product was crystallographically characterized to reveal the self-assembly of [Cs+//(C20H103-)/4K+/(C20H103-)//Cs+], in which two triply-charged corannulene decks encapsulate a rectangle of four potassium ions (the K···K separations are 4.212(4) and 5.185(4) Å), with the exterior concave bowl cavities being selectively filled by one cesium ion each. In order to provide insights into the geometrical features and electronic structure of this novel mixed-metal organometallic self-assembly, an in-depth theoretical investigation has been carried out. Specifically, the influence of internal metal binding on the geometry and magnetic coupling of C20H10˙3- radicals is investigated for Group 1 metals. This study reveals that replacement of the sandwiched potassium ions with larger (Cs) and smaller (Li) ions allows variation of the size of the encapsulated metal belts, and thus enables tuning of the coupling of C20H10˙3- radicals.

7.
Dalton Trans ; 46(27): 8774-8781, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28234401

RESUMO

A series of benzannulated N-heterocyclic compounds containing divalent 14 group atoms, C6H4(NR)2EII, E = C, Si, Ge, Sn, Pb, have been studied by various experimental (vibrational and UV-vis spectroscopy) and theoretical (NICS, ISE, ACID) techniques. The methods used confirm 10 π-electron delocalization (aromaticity) in these heterocycles, however, the aromaticity sequences estimated by the criteria based on different physical properties do not coincide.

8.
J Am Chem Soc ; 139(6): 2435-2442, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28076948

RESUMO

A series of alkali metal capped cerium(IV) imido complexes, [M(solv)x][Ce═N(3,5-(CF3)2C6H3)(TriNOx)] (M = Li, K, Rb, Cs; solv = TMEDA, THF, Et2O, or DME), was isolated and fully characterized. An X-ray structural investigation of the cerium imido complexes demonstrated the impact of the alkali metal counterions on the geometry of the [Ce═N(3,5-(CF3)2C6H3)(TriNOx)]- moiety. Substantial shortening of the Ce═N bond was observed with increasing size of the alkali metal cation. The first complex featuring an unsupported, terminal multiple bond between a Ce(IV) ion and a ligand fragment was also isolated by encapsulation of a Cs+ counterion with 2.2.2-cryptand. This complex shows the shortest recorded Ce═N bond length of 2.077(3) Å. Computational investigation of the cerium imido complexes using DFT methods showed a relatively larger contribution of the cerium 5d orbital than the 4f orbital to the Ce═N bonds. The [K(DME)2][Ce═N(3,5-(CF3)2C6H3)(TriNOx)] complex cleaves the Si-O bond in (Me3Si)2O, yielding the [(Me3SiO)CeIV(TriNOx)] adduct. The reaction of the rubidium capped imido complex with benzophenone resulted in the formation of a rare Ce(IV)-oxo complex, that was stabilized by a supramolecular, tetrameric oligomerization of the Ce═O units with rubidium cations.

9.
Angew Chem Int Ed Engl ; 55(43): 13465-13469, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27654127

RESUMO

N-Heterocyclic carbenes (NHC's) are known to serve as efficient substrates for the stabilization of various transient species possessing low-valent Group 14 elements and for the generation of double E=C bonds. Herein, we report that the thermal tri- and tetramerizations of pyridoannulated silylene 1 lead to the formation of remarkably stable silenes 2 and 3 featuring zwitterionic distribution of electron density. Co-oligomerization of 1 and its germanium analogue gives a related tetrameric product 4 containing low-valent germanium atom stabilized by binding with the partial carbene-character C atom. Bonding situations in 2-4 are best described as silene or germene with the significant zwitterionic distribution of electron density. The singlet diradical electronic state of 2 is 10 kcal mol-1 higher than the ground state configuration.

10.
J Am Chem Soc ; 138(22): 6928-31, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27163651

RESUMO

Structurally authenticated, terminal lanthanide-ligand multiple bonds are rare and expected to be highly reactive. Even capped with an alkali metal cation, poor orbital energy matching and overlap of metal and ligand valence orbitals should result in strong charge polarization within such bonds. We expand on a new strategy for isolating terminal lanthanide-ligand multiple bonds using cerium(IV) complexes. In the current case, our tailored tris(hydroxylaminato) ligand framework, TriNOx(3-), provides steric protection against ligand scrambling and metal complex oligomerization and electronic protection against reduction. This strategy culminates in isolation of the first formal Ce═N bonded moiety in the complex [K(DME)2][Ce═N(3,5-(CF3)2C6H3)(TriNOx)], whose Ce═N bond is the shortest known at 2.119(3) Å.

11.
Dalton Trans ; 45(15): 6313-23, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26974288

RESUMO

The coordination of C-F moieties to electrophilic metal cations has been increasingly recognized in f-element chemistry over the last two decades. These C-F→Ln/An interactions are readily identified in the solid state and can persist in solution. The binding energies of C-F→Ln/An interactions lead to their ready displacement to expose metal centers to substrates, which is implicated in cationic polymerization catalysts. C-F→Ln/An coordination is also an elementary step in C-F bond activation, proceeding through either homolytic or heterolytic cleavage of chemically inert C-F bonds. The influence of C-F→Ln/An interactions on the geometries of coordination compounds and their electronic impact on metal cations are also examined in this Perspective article.

12.
Chem Sci ; 7(3): 1954-1961, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29899919

RESUMO

The first structural characterization of the transient triply-reduced state of corannulene (C20H10) is accomplished. The X-ray crystallographic study reveals that the C20H10˙3- trianions, generated by corannulene reduction with metallic cesium, form a novel type of supramolecular sandwich-type assembly, [Cs+//(C20H103-)/4Cs+/(C20H103-)//Cs+]. In the product, two triply-charged corannulene decks encapsulate a rectangle of four cesium ions with the external concave bowl cavities being filled by one cesium ion each. The structural investigation is augmented by in-depth theoretical calculations to provide insights into the geometrical features and electronic structure of this unique organometallic self-assembly.

13.
Acta Crystallogr C Struct Chem ; 71(Pt 8): 690-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26243416

RESUMO

The monoanion of dihydrogenated corannulene isolated in the form of its potassium salt, namely tris(diglyme-κ(3)O,O',O'')potassium hexacyclo[11.5.2.0(4,17).0(7,16).0(10,15).0(14,18)]icosa-1,3,5,7(16),8,10(15),11,13,17-nonaenide, [K(C6H14O3)3](C20H12), has been structurally characterized for the first time. The X-ray study confirms the previous NMR spectroscopic prediction that the two H atoms are attached to the same six-membered ring to form 1,2-dihydrocorannulene, thus destroying the aromaticity of only one arene ring of the corannulene core. The direct comparison of (C20H12)(-) with the parent corannulene anion, (C20H10)(-), is provided to illustrate the geometry perturbations caused by rim hydrogenation.

14.
Chemistry ; 21(41): 14268-79, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26224357

RESUMO

A detailed structural overview of a family of bowl-shaped polycyclic aromatic carbocations of the type [C20 H10 R](+) with different R functionalities tethered to the interior surface of corannulene (C20 H10 ) is provided. Changing the identity of the surface-bound groups through alkyl chains spanning from one to four carbon atoms and incorporating a different degree of halogenation has led to the fine tuning of the bowl structures and properties. The deformation of the corannulene core upon functionalization has been revealed based on X-ray crystallographic analysis and compared for the series of cations with R=CH3 , CH2 Cl, CHCl2 , CCl3 , CH2 CH3 , CH2 CH2 Cl, and CH2 CH2 Br. The resulting carbocations have been isolated with several metal-based counterions, varying in size and coordinating abilities ([AlCl4 ](-) , [AlBr4 ](-) , [(SnCl)(GaCl4 )2 ](-) , and [Al(OC(CF3 )3 )4 ](-) ). A variety of aggregation patterns in the solid state has been revealed based on different intermolecular interactions ranging from cation-anion to π-π stacking and to halogen⋅⋅⋅π interactions. For the [C20 H10 CH2 Cl](+) ion crystallized with several different counterions, the conformation of the R group attached to the central five-membered ring of corannulene moiety was found to depend on the solid-state environment defined by the identity of anions. Solution NMR and UV/Vis investigations have been used to complement the X-ray diffraction studies for this series of corannulene-based cations and to demonstrate their different association patterns with the solvent molecules.

15.
Chem Sci ; 6(3): 1959-1966, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28717455

RESUMO

Self-assembly processes of the highly reduced bowl-shaped corannulene generated by the chemical reduction with a binary combination of alkali metals, namely Li-Rb, have been investigated by variable-temperature 1H and 7Li NMR spectroscopy. The formation of several unique mixed metal sandwich products based on tetrareduced corannulene, C20H104- (14-), has been revealed followed by investigation of their dynamic transformations in solutions. Analysis of NMR data allowed to propose the mechanism of stepwise alkali metal substitution as well as to identify experimental conditions for the isolation of intermediate and final supramolecular products. As a result, two new triple-decker aggregates with a mixed Li-Rb core, [{Rb(THF)2}2]//[Li3Rb2(C20H10)2{Li+(THF)}] (2) and [{Rb(diglyme)}2]//[Li3Rb3(C20H10)2(diglyme)2]·0.5THF (3·0.5THF), have been crystallized and structurally characterized. The Li3Rb2-product has an open coordination site at the sandwich periphery and thus is considered transient on the way to the Li3Rb3-sandwich having the maximized intercalated alkali metal content. Next, the formation of the LiRb5 self-assembly with 14- has been identified by 7Li NMR as the final step in a series of dynamic transformations in this system. This product was also isolated and crystallographically characterized to confirm the LiRb5 core. Notably, all sandwiches have their central cavities, located in between the hub-sites of two C20H104- decks, occupied by an internal Li+ ion which exhibits the record high negative shift (ranging from -21 to -25 ppm) in 7Li NMR spectra. The isolation of three novel aggregates having different Li-Rb core compositions allowed us to look into the origin of the unusual 7Li NMR shifts at the molecular level. The discussion of formation mechanisms, dynamic transformations as well as unique electronic structures of these remarkable mixed alkali metal organometallic self-assemblies is provided and supported by DFT calculations.

16.
Chemistry ; 20(50): 16652-6, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25346531

RESUMO

A new class of exceptionally stable asymmetric N-heterocyclic germylenes, stannylenes, and plumbylenes has been successfully isolated and characterized by single-crystal X-ray diffraction analysis and multinuclear NMR spectroscopy. Their stability results from tetrameric supramolecular aggregation through strong intermolecular Npy →E(II) (E=Ge, Sn, Pb) interactions involving the nitrogen atom of a neighboring pyridine moiety. The electronic structures and stabilities of the prepared divalent derivatives of Ge, Sn, and Pb in monomeric and aggregated forms are discussed based on theoretical investigations.

17.
Chem Commun (Camb) ; 50(20): 2657-9, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24473464

RESUMO

The X-ray crystallographic study of C60H28 consisting of two tethered corannulene bowls revealed a unique solid-state packing based on tight convex-concave π-π interactions. The controlled reduction of C60H28 resulted in the isolation and structural characterization of its dianion in the form of the rubidium salt that shows an entrapment of counterions by an anionic pincer.

18.
Angew Chem Int Ed Engl ; 53(1): 140-5, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24375738

RESUMO

The first members of a new class of supramolecular organometallic compounds with mixed-alkali-metal cluster cores, LiK5 and Li3 K3 , sandwiched between two four-fold reduced corannulene decks are prepared and fully characterized. The triple-decker supramolecular anions, [(C20 H10 (4-) )(LiK5 )(6+) (C20 H10 (4-) )](2-) and [(C20 H10 (4-) )(Li3 K3 )(6+) (C20 H10 (4-) )](2-) , illustrate a record ability of bowl-shaped and highly charged corannulene to provide all its sites, five benzene rings fused to a central five-membered ring, for binding of six alkali-metal ions. The previously unseen engagement of the hub-site of C20 H10 (4-) in lithium binding is accompanied by unprecedented shifts up to -24 ppm in (7) Li NMR spectra. The discussion of product formation mechanism, augmented by calculations, is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...