Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873699

RESUMO

Antibiotic resistance is a major public health threat, and alternatives to antibiotic therapy are urgently needed. Immunotherapy, particularly the blockade of inhibitory immune checkpoints, is a leading treatment option in cancer and autoimmunity. In this study, we used a murine model of Salmonella Typhimurium infection to investigate whether immune checkpoint blockade could be applied to bacterial infection. We found that the immune checkpoint T-cell immunoglobulin and ITIM domain (TIGIT) was significantly upregulated on lymphocytes during infection, particularly on CD4+ T cells, drastically limiting their proinflammatory function. Blockade of TIGIT in vivo using monoclonal antibodies was able to enhance immunity and improve bacterial clearance. The efficacy of anti-TIGIT was dependent on the capacity of the antibody to bind to Fc (fragment crystallizable) receptors, giving important insights into the mechanism of anti-TIGIT therapy. This research suggests that targeting immune checkpoints, such as TIGIT, has the potential to enhance immune responses toward bacteria and restore antibacterial treatment options in the face of antibiotic resistance.

2.
Cardiovasc Res ; 119(13): 2278-2293, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37595265

RESUMO

Vascular cell adhesion molecule-1 (VCAM-1) has been well established as a critical contributor to atherosclerosis and consequently as an attractive therapeutic target for anti-atherosclerotic drug candidates. Many publications have demonstrated that disrupting the VCAM-1 function blocks monocyte infiltration into the sub-endothelial space, which effectively prevents macrophage maturation and foam cell transformation necessary for atherosclerotic lesion formation. Currently, most VCAM-1-inhibiting drug candidates in pre-clinical and clinical testing do not directly target VCAM-1 itself but rather down-regulate its expression by inhibiting upstream cytokines and transcriptional regulators. However, the pleiotropic nature of these regulators within innate immunity means that optimizing dosage to a level that suppresses pathological activity while preserving normal physiological function is extremely challenging and oftentimes infeasible. In recent years, highly specific pharmacological strategies that selectively inhibit VCAM-1 function have emerged, particularly peptide- and antibody-based novel therapeutics. Studies in such VCAM-1-directed therapies so far remain scarce and are limited by the constraints of current experimental atherosclerosis models in accurately representing the complex pathophysiology of the disease. This has prompted the need for a comprehensive review that recounts the evolution of VCAM-1-directed pharmaceuticals and addresses the current challenges in novel anti-atherosclerotic drug development.


Assuntos
Aterosclerose , Molécula 1 de Adesão de Célula Vascular , Humanos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Endotélio Vascular/metabolismo , Monócitos/metabolismo , Descoberta de Drogas , Adesão Celular
3.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955604

RESUMO

Monoclonal antibodies (mAbs) are one of the most successful and versatile protein-based pharmaceutical products used to treat multiple pathological conditions. The remarkable specificity of mAbs and their affinity for biological targets has led to the implementation of mAbs in the therapeutic regime of oncogenic, chronic inflammatory, cardiovascular, and infectious diseases. Thus, the discovery of novel mAbs with defined functional activities is of crucial importance to expand our ability to address current and future clinical challenges. In vitro, antigen-driven affinity selection employing phage display biopanning is a commonly used technique to isolate mAbs. The success of biopanning is dependent on the quality and the presentation format of the antigen, which is critical when isolating mAbs against membrane protein targets. Here, we provide a comprehensive investigation of two established panning strategies, surface-tethering of a recombinant extracellular domain and cell-based biopanning, to examine the impact of antigen presentation on selection outcomes with regards to the isolation of positive mAbs with functional potential against a proof-of-concept type I cell surface receptor. Based on the higher sequence diversity of the resulting antibody repertoire, presentation of a type I membrane protein in soluble form was more advantageous over presentation in cell-based format. Our results will contribute to inform and guide future antibody discovery campaigns against cell surface proteins.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Anticorpos Monoclonais , Bacteriófagos/genética , Bioprospecção , Técnicas de Visualização da Superfície Celular/métodos , Proteínas de Membrana
4.
Cell Rep ; 36(3): 109406, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289370

RESUMO

Adaptation to changing environments and immune evasion is pivotal for fitness of pathogens. Yet, the underlying mechanisms remain largely unknown. Adaptation is governed by dynamic transcriptional re-programming, which is tightly connected to chromatin architecture. Here, we report a pivotal role for the HIR histone chaperone complex in modulating virulence of the human fungal pathogen Candida albicans. Genetic ablation of HIR function alters chromatin accessibility linked to aberrant transcriptional responses to protein as nitrogen source. This accelerates metabolic adaptation and increases the release of extracellular proteases, which enables scavenging of alternative nitrogen sources. Furthermore, HIR controls fungal virulence, as HIR1 deletion leads to differential recognition by immune cells and hypervirulence in a mouse model of systemic infection. This work provides mechanistic insights into chromatin-coupled regulatory mechanisms that fine-tune pathogen gene expression and virulence. Furthermore, the data point toward the requirement of refined screening approaches to exploit chromatin modifications as antifungal strategies.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Chaperonas de Histonas/metabolismo , Nitrogênio/metabolismo , Adaptação Fisiológica/genética , Animais , Candida albicans/genética , Candidíase/microbiologia , Candidíase/patologia , Deleção de Genes , Loci Gênicos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Proteólise , Transcrição Gênica , Virulência
5.
Biochim Biophys Acta Mol Cell Res ; 1868(9): 119073, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34062155

RESUMO

The Endoplasmic Reticulum (ER) is responsible for the folding and post-translational modification of secretory proteins, as well as for triaging misfolded proteins. During folding, there is a complex yet only partially understood interplay between disulfide bond formation, which is an enzyme catalyzed event in the oxidizing environment of the ER, along with other post-translational modifications (PTMs) and chaperone-supported protein folding. Here, we used the glycoprotein torsinA as a model substrate to explore the impact of ER redox homeostasis on PTMs and protein biogenesis. TorsinA is a AAA+ ATPase with unusual oligomeric properties and controversial functions. The deletion of a C-terminal glutamic acid residue (∆E) is associated with the development of Early-Onset Torsion Dystonia, a severe movement disorder. TorsinA differs from other AAA+ ATPases since it is an ER resident, and as a result of its entry into the ER torsinA contains two N-linked glycans and at least one disulfide bond. The role of these PTMs on torsinA biogenesis and function and the identity of the enzymes that catalyze them are poorly defined. Using a yeast torsinA expression system, we demonstrate that a specific protein disulfide isomerase, Pdi1, affects the folding and N-linked glycosylation of torsinA and torsinA∆E in a redox-dependent manner, suggesting that the acquisition of early torsinA folding intermediates is sensitive to perturbed interactions between Cys residues and the quality control machinery. We also highlight the role of specific Cys residues during torsinA biogenesis and demonstrate that torsinA∆E is more sensitive than torsinA when these Cys residues are mutated.


Assuntos
Adenosina Trifosfatases/metabolismo , Homeostase , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Retículo Endoplasmático/metabolismo , Glicosilação , Modelos Moleculares , Oxirredução , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/química
6.
Biochem Biophys Res Commun ; 553: 72-77, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33756348

RESUMO

Germin and germin-like proteins (GLPs) are a broad family of extracellular glycoproteins ubiquitously distributed in plants. Overexpression of Oryza sativa root germin like protein 1 (OsRGLP1) enhances superoxide dismutase (SOD) activity in transgenic plants. Here, we report bioinformatic analysis and heterologous expression of OsRGLP1 to study the role of glycosylation on OsRGLP1 protein stability and activity. Sequence analysis of OsRGLP1 homologs identified diverse N-glycosylation sequons, one of which was highly conserved. We therefore expressed OsRGLP1 in glycosylation-competent Saccharomyces cerevisiae as a Maltose Binding Protein (MBP) fusion. Mass spectrometry analysis of purified OsRGLP1 showed it was expressed by S. cerevisiae in both N-glycosylated and unmodified forms. Glycoprotein thermal profiling showed little difference in the thermal stability of the glycosylated and unmodified protein forms. Circular Dichroism spectroscopy of MBP-OsRGLP1 and a N-Q glycosylation-deficient variant showed that both glycosylated and unmodified MBP-OsRGLP1 had similar secondary structure, and both forms had equivalent SOD activity. Together, we concluded that glycosylation was not critical for OsRGLP1 protein stability or activity, and it could therefore likely be produced in Escherichia coli without glycosylation. Indeed, we found that OsRGLP1 could be efficiently expressed and purified from K12 shuffle E. coli with a specific activity of 1251 ± 70 Units/mg. In conclusion, we find that some highly conserved N-glycosylation sites are not necessarily required for protein stability or activity, and describe a suitable method for production of OsRGLP1 which paves the way for further characterization and use of this protein.


Assuntos
Sequência Conservada , Glicoproteínas/química , Glicoproteínas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Glicosilação , Oryza/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/química , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/isolamento & purificação , Superóxido Dismutase/metabolismo
7.
Commun Biol ; 4(1): 390, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758337

RESUMO

Coagulation factor IX (FIX) is a complex post-translationally modified human serum glycoprotein and high-value biopharmaceutical. The quality of recombinant FIX (rFIX), especially complete γ-carboxylation, is critical for rFIX clinical efficacy. Bioreactor operating conditions can impact rFIX production and post-translational modifications (PTMs). With the goal of optimizing rFIX production, we developed a suite of Data Independent Acquisition Mass Spectrometry (DIA-MS) proteomics methods and used these to investigate rFIX yield, γ-carboxylation, other PTMs, and host cell proteins during bioreactor culture and after purification. We detail the dynamics of site-specific PTM occupancy and structure on rFIX during production, which correlated with the efficiency of purification and the quality of the purified product. We identified new PTMs in rFIX near the GLA domain which could impact rFIX GLA-dependent purification and function. Our workflows are applicable to other biologics and expression systems, and should aid in the optimization and quality control of upstream and downstream bioprocesses.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Coagulantes/isolamento & purificação , Meios de Cultura/metabolismo , Fator IX/isolamento & purificação , Células Cultivadas , Cromatografia de Fase Reversa , Humanos , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteômica , Controle de Qualidade , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Carga de Trabalho
8.
Front Mol Biosci ; 7: 585643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134321

RESUMO

TorsinA is a AAA+ ATPase involved in the severe neurological disease Early Onset Torsion Dystonia. Despite the impressive progress in the field in the recent years, the structural organization and function of this intriguing molecule is still not clear. One outstanding difference between torsinA and other AAA+ ATPases is that torsinA is a glycoprotein. TorsinA N-linked glycans impact torsinA biogenesis and subcellular localization. Here, we propose that torsinA glycans also modulate torsinA oligomerization properties. We used structural modeling to test this idea, and show that N-linked glycans appear to restrict torsinA's ability to form closed homohexameric ring assemblies, and instead promote an open hexameric conformation that allows torsinA interaction with key cofactors required for ATP hydrolysis. This mechanism would make torsinA a prime example of Nature's sophisticated molecular glycoengineering.

9.
Glycoconj J ; 37(4): 471-483, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32378017

RESUMO

Human Factor IX is a highly post-translationally modified protein that is an important clotting factor in the blood coagulation cascade. Functional deficiencies in Factor IX result in the bleeding disorder haemophilia B, which is treated with plasma-derived or recombinant Factor IX concentrates. Here, we investigated the post-translational modifications of human serum-derived Factor IX and report previously undescribed O-linked monosaccharide compositions at serine 141 and a novel site of glycosylation. At serine 141 we observed two monosaccharide compositions, with HexNAc1Hex1NeuAc2 dominant and a low level of HexNAc1Hex1NeuAc1. This O-linked site lies N-terminal to the first cleavage site for the activation peptide, an important region of the protein that is removed to activate Factor IX. The novel site is an N-linked site in the serine protease domain with low occupancy in a non-canonical consensus motif at asparagine 258, observed with a HexNAc4Hex5NeuAc2 monosaccharide composition attached. This is the first reported instance of a site of modification in the serine protease domain. The description of these glycosylation events provides a basis for future functional studies and contributes to structural characterisation of native Factor IX for the production of effective therapeutic biosimilars and biobetters.


Assuntos
Fator IX/metabolismo , Fator IX/análise , Fator IX/isolamento & purificação , Glicosilação , Humanos , Espectrometria de Massas , Monossacarídeos/análise , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Serina/metabolismo
10.
J Proteome Res ; 19(5): 2149-2158, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32207952

RESUMO

Proteomic analysis of bioreactor supernatants can inform on cellular metabolic status, viability, and productivity, as well as product quality, which can in turn help optimize bioreactor operation. Incubating mammalian cells in bioreactors requires the addition of polymeric surfactants such as Pluronic F68, which reduce the sheer stress caused by agitation. However, these surfactants are incompatible with mass spectrometry proteomics and must be eliminated during sample preparation. Here, we compared four different sample preparation methods to eliminate polymeric surfactants from filtered bioreactor supernatant samples: organic solvent precipitation; filter-assisted sample preparation (FASP); S-Trap; and single-pot, solid-phase, sample preparation (SP3). We found that SP3 and S-Trap substantially reduced or eliminated the polymer(s), but S-Trap provided the most robust cleanup and highest quality data. Additionally, we observed that SP3 sample preparation of our samples and in other published data sets was associated with partial alkylation of cysteines, which could impact the confidence and robustness of protein identification and quantification. Finally, we observed that several commercial mammalian cell culture media and media supplements also contained polymers with similar mass spectrometry profiles, and we suggest that proteomic analyses in these media will also benefit from the use of S-Trap sample preparation.


Assuntos
Proteômica , Tensoativos , Animais , Reatores Biológicos , Técnicas de Cultura de Células , Poloxâmero
11.
Mol Omics ; 16(2): 100-112, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32104808

RESUMO

Data Independent Acquisition (DIA) Mass Spectrometry (MS) workflows allow unbiased measurement of all detectable peptides from complex proteomes, but require ion libraries for interrogation of peptides of interest. These DIA ion libraries can be theoretical or built from peptide identification data from Data Dependent Acquisition (DDA) MS workflows. However, DDA libraries derived from empirical data rely on confident peptide identification, which can be challenging for peptides carrying complex post-translational modifications. Here, we present DIALib, software to automate the construction of peptide and glycopeptide Data Independent Acquisition ion Libraries. We show that DIALib theoretical ion libraries can identify and measure diverse N- and O-glycopeptides from yeast and mammalian glycoproteins without prior knowledge of the glycan structures present. We present proof-of-principle data from a moderately complex yeast cell wall glycoproteome and a simple mixture of mammalian glycoproteins. We also show that DIALib libraries consisting only of glycan oxonium ions can quickly and easily provide a global compositional glycosylation profile of the detectable "oxoniome" of glycoproteomes. DIALib will help enable DIA glycoproteomics as a complementary analytical approach to DDA glycoproteomics.


Assuntos
Biologia Computacional/métodos , Proteínas Fúngicas/análise , Glicopeptídeos/análise , Peptídeos/análise , Animais , Proteínas Fúngicas/química , Glicosilação , Humanos , Espectrometria de Massas , Peptídeos/química , Estudo de Prova de Conceito , Processamento de Proteína Pós-Traducional , Fluxo de Trabalho
12.
Anal Biochem ; 596: 113625, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088200

RESUMO

Polysialylation is the enzymatic addition of a highly negatively charged sialic acid polymer to the non-reducing termini of glycans. Polysialylation plays an important role in development, and is involved in neurological diseases, neural tissue regeneration, and cancer. Polysialic acid (PSA) is also a biodegradable and non-immunogenic conjugate to therapeutic drugs to improve their pharmacokinetics. PSA chains vary in length, composition, and linkages, while the specific sites of polysialylation are important determinants of protein function. However, PSA is difficult to analyse by mass spectrometry (MS) due to its high negative charge and size. Most analytical approaches for analysis of PSA measure its degree of polymerization and monosaccharide composition, but do not address the key questions of site specificity and occupancy. Here, we developed a high-throughput LC-ESI-MS/MS glycoproteomics method to measure site-specific polysialylation of glycoproteins. This method measures site-specific PSA modification by using mild acid hydrolysis to eliminate PSA and sialic acids while leaving the glycan backbone intact, together with protease digestion followed by LC-ESI-MS/MS glycopeptide detection. PSA-modified glycopeptides are not detectable by LC-ESI-MS/MS, but become detectable after desialylation, allowing measurement of site-specific PSA occupancy. This method is an efficient analytical workflow for the study of glycoprotein polysialylation in biological and therapeutic settings.


Assuntos
Glicoproteínas/análise , Proteômica , Ácidos Siálicos/análise , Glicoproteínas/metabolismo , Humanos , Espectrometria de Massas , Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
13.
Methods Mol Biol ; 2049: 191-202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602612

RESUMO

Glycosylation is a complex posttranslational modification that is critical for regulating the functions of diverse proteins. Analysis of protein glycosylation is made challenging by the high degree of heterogeneity in both glycan occupancy and structure. Here, we describe methods for data-independent acquisition (SWATH) mass spectrometry analysis of structure and occupancy of N-glycans from yeast cell wall glycoproteins.


Assuntos
Glicoproteínas/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/metabolismo , Parede Celular/metabolismo , Glicosilação , Espectrometria de Massas
14.
Sci Rep ; 7(1): 8788, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821844

RESUMO

Nearly one third of the eukaryotic proteome traverses the secretory pathway and most of these proteins are N-glycosylated in the lumen of the endoplasmic reticulum. N-glycans fulfill multiple structural and biological functions, and are crucial for productive folding of many glycoproteins. N-glycosylation involves the attachment of an oligosaccharide to selected asparagine residues in the sequence N-X-S/T (X ≠ P), a motif known as an N-glycosylation'sequon'. Mutations that create novel sequons can cause disease due to the destabilizing effect of a bulky N-glycan. Thus, an analogous process must have occurred during evolution, whenever ancestrally cytosolic proteins were recruited to the secretory pathway. Here, we show that during evolution N-glycosylation triggered a dual selection pressure on secretory pathway proteins: while sequons were positively selected in solvent exposed regions, they were almost completely eliminated from buried sites. This process is one of the sharpest evolutionary signatures of secretory pathway proteins, and was therefore critical for the evolution of an efficient secretory pathway.


Assuntos
Células Eucarióticas/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Seleção Genética , Animais , Células COS , Chlorocebus aethiops , Biologia Computacional/métodos , Retículo Endoplasmático/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Glicoproteínas/química , Glicosilação , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica
15.
Dis Model Mech ; 10(9): 1129-1140, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28768697

RESUMO

Dystonia is the third most common movement disorder, but its diagnosis and treatment remain challenging. One of the most severe types of dystonia is early-onset torsion dystonia (EOTD). The best studied and validated EOTD-associated mutation, torsinAΔE, is a deletion of a C-terminal glutamate residue in the AAA+ ATPase torsinA. TorsinA appears to be an endoplasmic reticulum (ER)/nuclear envelope chaperone with multiple roles in the secretory pathway and in determining subcellular architecture. Many functions are disabled in the torsinAΔE variant, and torsinAΔE is also less stable than wild-type torsinA and is a substrate for ER-associated degradation. Nevertheless, the molecular factors involved in the biogenesis and degradation of torsinA and torsinAΔE have not been fully explored. To identify conserved cellular factors that can alter torsinAΔE protein levels, we designed a new high-throughput, automated, genome-wide screen utilizing our validated Saccharomyces cerevisiae torsinA expression system. By analyzing the yeast non-essential gene deletion collection, we identified 365 deletion strains with altered torsinAΔE steady-state levels. One notable hit was EUG1, which encodes a member of the protein disulfide isomerase family (PDIs). PDIs reside in the ER and catalyze the formation of disulfide bonds, mediate protein quality control and aid in nascent protein folding. We validated the role of select human PDIs in torsinA biogenesis in mammalian cells and found that overexpression of PDIs reduced the levels of torsinA and torsinAΔE. Together, our data report the first genome-wide screen to identify cellular factors that alter expression levels of the EOTD-associated protein torsinAΔE. More generally, the identified hits help in dissecting the cellular machinery involved in folding and degrading a torsinA variant, and constitute potential therapeutic factors for EOTD. This screen can also be readily adapted to identify factors impacting the levels of any protein of interest, considerably expanding the applicability of yeast in both basic and applied research.


Assuntos
Distonia Muscular Deformante/genética , Testes Genéticos , Ensaios de Triagem em Larga Escala/métodos , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/genética , Ontologia Genética , Genes Fúngicos , Células HeLa , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Estabilidade Proteica
16.
Mol Cell Proteomics ; 15(7): 2435-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27094473

RESUMO

Glycan macro- and microheterogeneity have profound impacts on protein folding and function. This heterogeneity can be regulated by physiological or environmental factors. However, unregulated heterogeneity can lead to disease, and mutations in the glycosylation process cause a growing number of Congenital Disorders of Glycosylation. We systematically studied how mutations in the N-glycosylation pathway lead to defects in mature proteins using all viable Saccharomyces cerevisiae strains with deletions in genes encoding Endoplasmic Reticulum lumenal mannosyltransferases (Alg3, Alg9, and Alg12), glucosyltransferases (Alg6, Alg8, and Die2/Alg10), or oligosaccharyltransferase subunits (Ost3, Ost5, and Ost6). To measure the changes in glycan macro- and microheterogeneity in mature proteins caused by these mutations we developed a SWATH-mass spectrometry glycoproteomics workflow. We measured glycan structures and occupancy on mature cell wall glycoproteins, and relative protein abundance, in the different mutants. All mutants showed decreased glycan occupancy and altered cell wall proteomes compared with wild-type cells. Mutations in earlier mannosyltransferase or glucosyltransferase steps of glycan biosynthesis had stronger hypoglycosylation phenotypes, but glucosyltransferase defects were more severe. ER mannosyltransferase mutants displayed substantial global changes in glycan microheterogeneity consistent with truncations in the glycan transferred to protein in these strains. Although ER glucosyltransferase and oligosaccharyltransferase subunit mutants broadly showed no change in glycan structures, ost3Δ cells had shorter glycan structures at some sites, consistent with increased protein quality control mannosidase processing in this severely hypoglycosylating mutant. This method allows facile relative quantitative glycoproteomics, and our results provide insights into global regulation of site-specific glycosylation.


Assuntos
Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucosiltransferases/genética , Glicosilação , Hexosiltransferases/genética , Manosiltransferases/genética , Espectrometria de Massas/métodos , Proteínas de Membrana/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
Glycoconj J ; 33(3): 359-76, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26638212

RESUMO

Glycosylation is a co- and post-translational modification that is critical for the regulation of the biophysical properties and biological activities of diverse proteins. Biosynthetic pathways for protein glycosylation are inherently inefficient, resulting in high structural diversity in mature glycoproteins. Macroheterogeneity is the structural diversity due to the presence or absence of glycans at specific glycosylation sites, and is caused by inefficiency in the initial transfer of glycans to proteins. Here, we review the enzymatic and evolutionary mechanisms controlling macroheterogeneity, its biological consequences in physiological and disease states, its relevance to heterologous production and glycoengineering of glycoproteins, and mass spectrometry based methods for its analysis. We highlight the importance of the analysis of macroheterogeneity for a complete understanding of glycoprotein biosynthesis and function, and emphasize how advances in mass spectrometry glycoproteomics will enable analysis of this critical facet of glycoprotein structural diversity.


Assuntos
Glicoproteínas/química , Processamento de Proteína Pós-Traducional , Proteoma/química , Animais , Glicoproteínas/classificação , Glicoproteínas/metabolismo , Glicosilação , Humanos , Espectrometria de Massas/métodos , Proteoma/classificação , Proteoma/metabolismo
18.
J Biol Chem ; 289(18): 12727-47, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24627482

RESUMO

Early-onset torsion dystonia (EOTD) is a neurological disorder characterized by involuntary and sustained muscle contractions that can lead to paralysis and abnormal posture. EOTD is associated with the deletion of a glutamate (ΔE) in torsinA, an endoplasmic reticulum (ER) resident AAA(+) ATPase. To date, the effect of ΔE on torsinA and the reason that this mutation results in EOTD are unclear. Moreover, there are no specific therapeutic options to treat EOTD. To define the underlying biochemical defects associated with torsinAΔE and to uncover factors that might be targeted to offset defects associated with torsinAΔE, we developed a yeast torsinA expression system and tested the roles of ER chaperones in mediating the folding and stability of torsinA and torsinAΔE. We discovered that the ER lumenal Hsp70, BiP, an associated Hsp40, Scj1, and a nucleotide exchange factor, Lhs1, stabilize torsinA and torsinAΔE. BiP also maintained torsinA and torsinAΔE solubility. Mutations predicted to compromise specific torsinA functional motifs showed a synthetic interaction with the ΔE mutation and destabilized torsinAΔE, suggesting that the ΔE mutation predisposes torsinA to defects in the presence of secondary insults. In this case, BiP was required for torsinAΔE degradation, consistent with data that specific chaperones exhibit either pro-degradative or pro-folding activities. Finally, using two independent approaches, we established that BiP stabilizes torsinA and torsinAΔE in mammalian cells. Together, these data define BiP as the first identified torsinA chaperone, and treatments that modulate BiP might improve symptoms associated with EOTD.


Assuntos
Adenosina Trifosfatases/metabolismo , Distonia Muscular Deformante/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Animais , Western Blotting , Linhagem Celular , Distonia Muscular Deformante/genética , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Glicosilação , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Microscopia de Fluorescência , Chaperonas Moleculares/genética , Mutação , Estabilidade Proteica , Interferência de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
Springerplus ; 3: 743, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25674472

RESUMO

A single GAG codon deletion in the gene encoding torsinA is linked to most cases of early-onset torsion dystonia. TorsinA is an ER-localized membrane-associated ATPase from the AAA+ superfamily with an unknown biological function. We investigated the formation of oligomeric complexes of torsinA in cultured mammalian cells and found that wild type torsinA associates into a complex with a molecular weight consistent with that of a homohexamer. Interestingly, the dystonia-linked variant torsinAΔE displayed a reduced propensity to form the oligomers compared to the wild type protein. We also discovered that the deletion of the N-terminal membrane-associating region of torsinA abolished oligomer formation. Our results demonstrate that the dystonia-linked mutation in the torsinA gene produces a protein variant that is deficient in maintaining its oligomeric state and suggest that ER membrane association is required to stabilize the torsinA complex.

20.
Microbiology (Reading) ; 159(Pt 3): 565-579, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23306673

RESUMO

Candida albicans is the most prevalent fungal pathogen of humans. The current techniques used to construct C. albicans strains require integration of exogenous DNA at ectopic locations, which can exert position effects on gene expression that can confound the interpretation of data from critical experiments such as virulence assays. We have identified a large intergenic region, NEUT5L, which facilitates the integration and expression of ectopic genes. To construct and integrate inserts into this novel locus, we re-engineered yeast/bacterial shuttle vectors by incorporating 550 bp of homology to NEUT5L. These vectors allow rapid, facile cloning through in vivo recombination (gap repair) in Saccharomyces cerevisiae and efficient integration of the construct into the NEUT5L locus. Other useful features of these vectors include a choice of three selectable markers (URA3, the recyclable URA3-dpl200 or NAT1), and rare restriction enzyme recognition sites for releasing the insert from the vector prior to transformation into C. albicans, thereby reducing the insert size and preventing integration of non-C. albicans DNA. Importantly, unlike the commonly used RPS1/RP10 locus, integration at NEUT5L has no negative effect on growth rates and allows native-locus expression levels, making it an ideal genomic locus for the integration of exogenous DNA in C. albicans.


Assuntos
Candida albicans/genética , Clonagem Molecular/métodos , Engenharia Genética/métodos , Vetores Genéticos , Recombinação Genética , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...