Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
2.
Eur J Heart Fail ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837573

RESUMO

Cardiovascular disease (CVD) is the leading cause of morbimortality in Europe and worldwide. CVD imposes a heterogeneous spectrum of cardiac remodelling, depending on the insult nature, that is, pressure or volume overload, ischaemia, arrhythmias, infection, pathogenic gene variant, or cardiotoxicity. Moreover, the progression of CVD-induced remodelling is influenced by sex, age, genetic background and comorbidities, impacting patients' outcomes and prognosis. Cardiac reverse remodelling (RR) is defined as any normative improvement in cardiac geometry and function, driven by therapeutic interventions and rarely occurring spontaneously. While RR is the outcome desired for most CVD treatments, they often only slow/halt its progression or modify risk factors, calling for novel and more timely RR approaches. Interventions triggering RR depend on the myocardial insult and include drugs (renin-angiotensin-aldosterone system inhibitors, beta-blockers, diuretics and sodium-glucose cotransporter 2 inhibitors), devices (cardiac resynchronization therapy, ventricular assist devices), surgeries (valve replacement, coronary artery bypass graft), or physiological responses (deconditioning, postpartum). Subsequently, cardiac RR is inferred from the degree of normalization of left ventricular mass, ejection fraction and end-diastolic/end-systolic volumes, whose extent often correlates with patients' prognosis. However, strategies aimed at achieving sustained cardiac improvement, predictive models assessing the extent of RR, or even clinical endpoints that allow for distinguishing complete from incomplete RR or adverse remodelling objectively, remain limited and controversial. This scientific statement aims to define RR, clarify its underlying (patho)physiologic mechanisms and address (non)pharmacological options and promising strategies to promote RR, focusing on the left heart. We highlight the predictors of the extent of RR and review the prognostic significance/impact of incomplete RR/adverse remodelling. Lastly, we present an overview of RR animal models and potential future strategies under pre-clinical evaluation.

3.
Br J Pharmacol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760893

RESUMO

RNA therapeutics are emerging as a unique opportunity to drug currently "undruggable" molecules and diseases. While their advantages over conventional, small molecule drugs, their therapeutic implications and the tools for their effective in vivo delivery have been extensively reviewed, little attention has been so far paid to the technological platforms exploited for the discovery of RNA therapeutics. Here, we provide an overview of the existing platforms and ex vivo assays for RNA discovery, their advantages and disadvantages, as well as their main fields of application, with specific focus on RNA therapies that have reached either phase 3 or market approval.

4.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195652

RESUMO

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Núcleo Celular , Modelos Animais de Doenças , Detecção Precoce de Câncer , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Colágeno/metabolismo
5.
Cardiovasc Res ; 119(14): 2390-2404, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967390

RESUMO

While chronic heart failure (CHF) treatment has considerably improved patient prognosis and survival, the therapeutic management of acute heart failure (AHF) has remained virtually unchanged in the last decades. This is partly due to the scarcity of pre-clinical models for the pathophysiological assessment and, consequently, the limited knowledge of molecular mechanisms involved in the different AHF phenotypes. This scientific statement outlines the different trajectories from acute to CHF originating from the interaction between aetiology, genetic and environmental factors, and comorbidities. Furthermore, we discuss the potential molecular targets capable of unveiling new therapeutic perspectives to improve the outcome of the acute phase and counteracting the evolution towards CHF.


Assuntos
Insuficiência Cardíaca , Humanos , Doença Aguda , Prognóstico , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Doença Crônica , Fatores de Risco
6.
Front Physiol ; 14: 1237101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538375

RESUMO

Genetic cardiomyopathies are a group of inherited disorders in which myocardial structure and function are damaged. Many of these pathologies are rare and present with heterogenous phenotypes, thus personalized models are required to completely uncover their pathological mechanisms and develop valuable therapeutic strategies. Both cardiomyocytes and fibroblasts, differentiated from patient-specific human induced pluripotent stem cells, represent the most studied human cardiac cell models in the context of genetic cardiomyopathies. While endothelial dysfunction has been recognized as a possible pathogenetic mechanism, human induced pluripotent stem cell-derived endothelial cells are less studied, despite they constitute a suitable model to specifically dissect the role of the dysfunctional endothelium in the development and progression of these pathologies. In this review, we summarize the main studies in which human induced pluripotent stem cell-derived endothelial cells are used to investigate endothelial dysfunction in genetic-based cardiomyopathies to highlight new potential targets exploitable for therapeutic intervention, and we discuss novel perspectives that encourage research in this direction.

7.
Stem Cell Res ; 71: 103172, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37535990

RESUMO

Dilated cardiomyopathy (DCM) is a common heart disorder caused by genetic and non-genetic etiologies, characterized by left ventricular dilatation and contractile dysfunction. Here, we created a human induced pluripotent stem cell line from peripheral blood mononuclear cells using non-integrating vectors from a patient carrying a heterozygous LMNA variant (c.481G > A, p.Glu161Lys, NM_170707.4). The obtained EURACi015-A line, showed the typical morphology of pluripotent cells, normal karyotype and exhibited pluripotency markers and a trilineage differentiation potential. This cell line can be successfully differentiated into cardiomyocytes and endothelial cells. This line represents a human in vitro model to study the genetic basis of DCM.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiomiopatia Dilatada/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Lamina Tipo A/genética , Células Endoteliais/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação
8.
Cell Death Dis ; 14(7): 437, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454154

RESUMO

Pulmonary fibrosis is a devastating disease, in which fibrotic tissue progressively replaces lung alveolar structure, resulting in chronic respiratory failure. Alveolar type II cells act as epithelial stem cells, being able to transdifferentiate into alveolar type I cells, which mediate gas exchange, thus contributing to lung homeostasis and repair after damage. Impaired epithelial transdifferentiation is emerging as a major pathogenetic mechanism driving both onset and progression of fibrosis in the lung. Here, we show that lung endothelial cells secrete angiocrine factors that regulate alveolar cell differentiation. Specifically, we build on our previous data on the anti-fibrotic microRNA-200c and identify the Vascular Endothelial Growth Factor receptor 1, also named Flt1, as its main functional target in endothelial cells. Endothelial-specific knockout of Flt1 reproduces the anti-fibrotic effect of microRNA-200c against pulmonary fibrosis and results in the secretion of a pool of soluble factors and matrix components able to promote epithelial transdifferentiation in a paracrine manner. Collectively, these data indicate the existence of a complex endothelial-epithelial paracrine crosstalk in vitro and in vivo and position lung endothelial cells as a relevant therapeutic target in the fight against pulmonary fibrosis.


Assuntos
MicroRNAs , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/metabolismo , Transdiferenciação Celular , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Pulmão/metabolismo , Células Epiteliais Alveolares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
9.
Nat Cell Biol ; 25(4): 550-564, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894671

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs' biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence.


Assuntos
COVID-19 , Animais , Camundongos , SARS-CoV-2 , Senescência Celular , Dano ao DNA
10.
Comput Struct Biotechnol J ; 21: 1759-1773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915380

RESUMO

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are commonly used to model arrhythmogenic cardiomyopathy (ACM), a heritable cardiac disease characterized by severe ventricular arrhythmias, fibrofatty myocardial replacement and progressive ventricular dysfunction. Although ACM is inherited as an autosomal dominant disease, incomplete penetrance and variable expressivity are extremely common, resulting in different clinical manifestations. Here, we propose hiPSC-CMs as a powerful in vitro model to study incomplete penetrance in ACM. Six hiPSC lines were generated from blood samples of three ACM patients carrying a heterozygous deletion of exon 4 in the PKP2 gene, two asymptomatic (ASY) carriers of the same mutation and one healthy control (CTR), all belonging to the same family. Whole exome sequencing was performed in all family members and hiPSC-CMs were examined by ddPCR, western blot, Wes™ immunoassay system, patch clamp, immunofluorescence and RNASeq. Our results show molecular and functional differences between ACM and ASY hiPSC-CMs, including a higher amount of mutated PKP2 mRNA, a lower expression of the connexin-43 protein, a lower overall density of sodium current, a higher intracellular lipid accumulation and sarcomere disorganization in ACM compared to ASY hiPSC-CMs. Differentially expressed genes were also found, supporting a predisposition for a fatty phenotype in ACM hiPSC-CMs. These data indicate that hiPSC-CMs are a suitable model to study incomplete penetrance in ACM.

11.
NPJ Regen Med ; 8(1): 8, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774354

RESUMO

Nonhealing wounds place a significant burden on both quality of life of affected patients and health systems. Skin substitutes are applied to promote the closure of nonhealing wounds, although their efficacy is limited by inadequate vascularization. The stromal vascular fraction (SVF) from the adipose tissue is a promising therapy to overcome this limitation. Despite a few successful clinical trials, its incorporation in the clinical routine has been hampered by their inconsistent results. All these studies concluded by warranting pre-clinical work aimed at both characterizing the cell types composing the SVF and shedding light on their mechanism of action. Here, we established a model of nonhealing wound, in which we applied the SVF in combination with a clinical-grade skin substitute. We purified the SVF cells from transgenic animals to trace their fate after transplantation and observed that it gave rise to a mature vascular network composed of arteries, capillaries, veins, as well as lymphatics, structurally and functionally connected with the host circulation. Then we moved to a human-in-mouse model and confirmed that SVF-derived endothelial cells formed hybrid human-mouse vessels, that were stabilized by perivascular cells. Mechanistically, SVF-derived endothelial cells engrafted and expanded, directly contributing to the formation of new vessels, while a population of fibro-adipogenic progenitors stimulated the expansion of the host vasculature in a paracrine manner. These data have important clinical implications, as they provide a steppingstone toward the reproducible and effective adoption of the SVF as a standard care for nonhealing wounds.

12.
J Pathol ; 259(3): 254-263, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651103

RESUMO

SARS-CoV-2 infection is clinically heterogeneous, ranging from asymptomatic to deadly. A few patients with COVID-19 appear to recover from acute viral infection but nevertheless progress in their disease and eventually die, despite persistent negativity at molecular tests for SARS-CoV-2 RNA. Here, we performed post-mortem analyses in 27 consecutive patients who had apparently recovered from COVID-19 but had progressively worsened in their clinical conditions despite repeated viral negativity in nasopharyngeal swabs or bronchioalveolar lavage for 11-300 consecutive days (average: 105.5 days). Three of these patients remained PCR-negative for over 9 months. Post-mortem analysis revealed evidence of diffuse or focal interstitial pneumonia in 23/27 (81%) patients, accompanied by extensive fibrotic substitution in 13 cases (47%). Despite apparent virological remission, lung pathology was similar to that observed in acute COVID-19 individuals, including micro- and macro-vascular thrombosis (67% of cases), vasculitis (24%), squamous metaplasia of the respiratory epithelium (30%), frequent cytological abnormalities and syncytia (67%), and the presence of dysmorphic features in the bronchial cartilage (44%). Consistent with molecular test negativity, SARS-CoV-2 antigens were not detected in the respiratory epithelium. In contrast, antibodies against both spike and nucleocapsid revealed the frequent (70%) infection of bronchial cartilage chondrocytes and para-bronchial gland epithelial cells. In a few patients (19%), we also detected positivity in vascular pericytes and endothelial cells. Quantitative RT-PCR amplification in tissue lysates confirmed the presence of viral RNA. Together, these findings indicate that SARS-CoV-2 infection can persist significantly longer than suggested by standard PCR-negative tests, with specific infection of specific cell types in the lung. Whether these persistently infected cells also play a pathogenic role in long COVID remains to be addressed. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , RNA Viral/genética , Células Endoteliais , Síndrome de COVID-19 Pós-Aguda
13.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555424

RESUMO

Cardiac development is characterized by the active proliferation of different cardiac cell types, in particular cardiomyocytes and endothelial cells, that eventually build the beating heart. In mammals, these cells lose their regenerative potential early after birth, representing a major obstacle to our current capacity to restore the myocardial structure and function after an injury. Increasing evidence indicates that the cardiac extracellular matrix (ECM) actively regulates and orchestrates the proliferation, differentiation, and migration of cardiac cells within the heart, and that any change in either the composition of the ECM or its mechanical properties ultimately affect the behavior of these cells throughout one's life. Thus, understanding the role of ECMs' proteins and related signaling pathways on cardiac cell proliferation is essential to develop effective strategies fostering the regeneration of a damaged heart. This review provides an overview of the components of the ECM and its mechanical properties, whose function in cardiac regeneration has been elucidated, with a major focus on the strengths and weaknesses of the experimental models so far exploited to demonstrate the actual pro-regenerative capacity of the components of the ECM and to translate this knowledge into new therapies.


Assuntos
Células Endoteliais , Miocárdio , Animais , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Mamíferos
14.
J Am Coll Cardiol ; 80(21): 1981-1994, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36396199

RESUMO

BACKGROUND: Diverse genetic backgrounds often lead to phenotypic heterogeneity in cardiomyopathies (CMPs). Previous genotype-phenotype studies have primarily focused on the analysis of a single phenotype, and the diagnostic and prognostic features of the CMP genotype across different phenotypic expressions remain poorly understood. OBJECTIVES: We sought to define differences in outcome prediction when stratifying patients based on phenotype at presentation compared with genotype in a large cohort of patients with CMPs and positive genetic testing. METHODS: Dilated cardiomyopathy (DCM), arrhythmogenic right ventricular cardiomyopathy, left-dominant arrhythmogenic cardiomyopathy, and biventricular arrhythmogenic cardiomyopathy were examined in this study. A total of 281 patients (80% DCM) with pathogenic or likely pathogenic variants were included. The primary and secondary outcomes were: 1) all-cause mortality (D)/heart transplant (HT); 2) sudden cardiac death/major ventricular arrhythmias (SCD/MVA); and 3) heart failure-related death (DHF)/HT/left ventricular assist device implantation (LVAD). RESULTS: Survival analysis revealed that SCD/MVA events occurred more frequently in patients without a DCM phenotype and in carriers of DSP, PKP2, LMNA, and FLNC variants. However, after adjustment for age and sex, genotype-based classification, but not phenotype-based classification, was predictive of SCD/MVA. LMNA showed the worst trends in terms of D/HT and DHF/HT/LVAD. CONCLUSIONS: Genotypes were associated with significant phenotypic heterogeneity in genetic cardiomyopathies. Nevertheless, in our study, genotypic-based classification showed higher precision in predicting the outcome of patients with CMP than phenotype-based classification. These findings add to our current understanding of inherited CMPs and contribute to the risk stratification of patients with positive genetic testing.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Humanos , Arritmias Cardíacas/diagnóstico , Cardiomiopatias/diagnóstico , Cardiomiopatia Dilatada/genética , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Genótipo , Fenótipo , Prognóstico
16.
Sci Transl Med ; 14(660): eabo0699, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044596

RESUMO

Therapies for patients with myocardial infarction and heart failure are urgently needed, in light of the breadth of these conditions and lack of curative treatments. To systematically identify previously unidentified cardioactive biologicals in an unbiased manner in vivo, we developed cardiac FunSel, a method for the systematic, functional selection of effective factors using a library of 1198 barcoded adeno-associated virus (AAV) vectors encoding for the mouse secretome. By pooled vector injection into the heart, this library was screened to functionally select for factors that confer cardioprotection against myocardial infarction. After two rounds of iterative selection in mice, cardiac FunSel identified three proteins [chordin-like 1 (Chrdl1), family with sequence similarity 3 member C (Fam3c), and Fam3b] that preserve cardiomyocyte viability, sustain cardiac function, and prevent pathological remodeling. In particular, Chrdl1 exerted its protective activity by binding and inhibiting extracellular bone morphogenetic protein 4 (BMP4), which resulted in protection against cardiomyocyte death and induction of autophagy in cardiomyocytes after myocardial infarction. Chrdl1 also inhibited fibrosis and maladaptive cardiac remodeling by binding transforming growth factor-ß (TGF-ß) and preventing cardiac fibroblast differentiation into myofibroblasts. Production of secreted and circulating Chrdl1, Fam3c, and Fam3b from the liver also protected the heart from myocardial infarction, thus supporting the use of the three proteins as recombinant factors. Together, these findings disclose a powerful method for the in vivo, unbiased selection of tissue-protective factors and describe potential cardiac therapeutics.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Secretoma , Animais , Citocinas/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miofibroblastos/patologia , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Remodelação Ventricular
18.
Trends Pharmacol Sci ; 43(11): 894-905, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779965

RESUMO

Biologics are revolutionizing the treatment of chronic diseases, such as cancer and monogenic disorders, by overcoming the limits of classic therapeutic approaches using small molecules. However, the clinical use of biologics is limited for cardiovascular diseases (CVDs) , which are the primary cause of morbidity and mortality worldwide. Here, we review the state-of-the-art use of biologics for cardiac disorders and provide a framework for understanding why they still struggle to enter the field. Some limitations are common and intrinsic to all biological drugs, whereas others depend on the complexity of cardiac disease. In our opinion, delineating these struggles will be valuable in developing and accelerating the approval of a new generation of biologics for CVDs.


Assuntos
Produtos Biológicos , Medicamentos Biossimilares , Cardiopatias , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Medicamentos Biossimilares/uso terapêutico , Cardiopatias/tratamento farmacológico , Humanos
19.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35743066

RESUMO

In this Special Issue we cover a selection of original articles and reviews devoted to the definition of novel molecular targets in cardiovascular diseases, which not only deepen our knowledge on the pathogenesis of the diseases under study, but potentially pave the way to novel diagnostic tools and therapeutic approaches [...].


Assuntos
Doenças Cardiovasculares , Humanos
20.
Environ Int ; 164: 107272, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526297

RESUMO

The current COVID-19 pandemic has highlighted the importance of aerosol-based transmission of human pathogens; this therefore calls for novel medical devices which are able to sterilize contaminated aerosols. Here we describe a new laser device able to sterilize droplets containing either viruses or bacteria. Using engineered viral particles, we determined the 10,600 nm wavelength as the most efficient and exploitable laser source to be manufactured in a commercial device. Given the lack of existing working models to reproduce a human aerosol containing living microbial particles, we developed a new system mimicking human droplet formation and preserving bacterial and viral viability. This evidenced the efficacy of 10,600 nm laser light to kill two aerosol transmitted human pathogens, Legionella pneumophila and SARS-CoV-2. The minimal exposure time of <15 ms was required for the inactivation of over 99% pathogens in the aerosol; this is a key element in the design of a device that is safe and can be used in preventing inter-individual transmission. This represents a major advantage over existing devices, which mainly aim at either purifying incoming air by filters or sterilizing solid surfaces, which are not the major transmission routes for airborne communicable diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Aerossóis , Humanos , Lasers , Pandemias , Esterilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...