Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501498

RESUMO

Poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB)-based nanocomposite films were prepared with bio-based additives (CNCs and ChNCs) and oligomer lactic acid (OLA) compatibilizer using extrusion and then blown to films at pilot scale. The aim was to identify suitable material formulations and nanocomposite production processes for film production at a larger scale targeting food packaging applications. The film-blowing process for both the PLA-PHB blend and CNC-nanocomposite was unstable and led to non-homogeneous films with wrinkles and creases, while the blowing of the ChNC-nanocomposite was stable and resulted in a smooth and homogeneous film. The optical microscopy of the blown nanocomposite films indicated well-dispersed chitin nanocrystals while the cellulose crystals were agglomerated to micrometer-size particles. The addition of the ChNCs also resulted in the improved mechanical performance of the PLA-PHB blend due to well-dispersed crystals in the nanoscale as well as the interaction between biopolymers and the chitin nanocrystals. The strength increased from 27 MPa to 37 MPa compared to the PLA-PHB blend and showed almost 36 times higher elongation at break resulting in 10 times tougher material. Finally, the nanocomposite film with ChNCs showed improved oxygen barrier performance as well as faster degradation, indicating its potential exploitation for packaging applications.

2.
Polymers (Basel) ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160551

RESUMO

This study focuses on the use of pilot-scale produced polyhydroxy butyrate (PHB) biopolymer and chitin nanocrystals (ChNCs) in two different concentrated (1 and 5 wt.%) nanocomposites. The nanocomposites were compounded using a twin-screw extruder and calendered into sheets. The crystallization was studied using polarized optical microscopy and differential scanning calorimetry, the thermal properties were studied using thermogravimetric analysis, the viscosity was studied using a shear rheometer, the mechanical properties were studied using conventional tensile testing, and the morphology of the prepared material was studied using optical microscopy and scanning electron microscopy. The results showed that the addition of ChNCs significantly affected the crystallization of PHB, resulting in slower crystallization, lower overall crystallinity, and smaller crystal size. Furthermore, the addition of ChNCs resulted in increased viscosity in the final formulations. The calendering process resulted in slightly aligned sheets and the nanocomposites with 5 wt.% ChNCs evaluated along the machine direction showed the highest mechanical properties, the strength increased from 24 to 33 MPa, while the transversal direction with lower initial strength at 14 MPa was improved to 21 MPa.

3.
ACS Appl Mater Interfaces ; 13(41): 49301-49312, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609829

RESUMO

The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding. We show that after a short argon plasma treatment of the surface of hot-blown PLA-PHB blend films, percolating networks of single-walled carbon nanotubes (SWCNTs) having sheet resistance well below 1 kΩ/□ can be deposited by dip coating to make electrode plates of capacitive touch sensors. We also demonstrate that the bioplastic films, as flexible dielectric substrates, are suitable for depositing conductive micropatterns of SWCNTs and Ag (1 kΩ/□ and 1 Ω/□, respectively) by means of inkjet and screen printing, with potential in printed circuit board applications. In addition, we exemplify compounded and molded composites of PLA with PL and MWCNTs as excellent candidates for electromagnetic interference shielding materials in the K-band radio frequencies (18.0-26.5 GHz) with shielding effectiveness of up to 40 and 46 dB, respectively.

4.
Nanomaterials (Basel) ; 11(2)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671659

RESUMO

In this paper, we study the correlation between the dielectric behavior of polypropylene/multi-walled carbon nanotube (PP/MWCNT) nanocomposites and the morphology with regard to the crystalline structure, nanofiller dispersion and injection molding conditions. As a result, in the range of the percolation threshold the dielectric behavior shifts to a more frequency-independent behavior, as the mold temperature increases. Moreover, the position further from the gate appears as the most conductive. This effect has been associated to a modification of the morphology of the MWCNT clusters induced by both the flow of the molten polymer during the processing phase and the variation of the crystalline structure, which is increasingly constituted by γ-phase as the mold temperature increases. The obtained results allow one to understand the effect of tuning the processing condition in the frequency-dependent electrical behavior of PP/MWCNT injection-molded nanocomposites, which can be successfully exploited for an advanced process/product design.

5.
Foods ; 11(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35010155

RESUMO

The thermal stability of four different commercial citrus peel extracts was tested and improved by an encapsulation process with ß-cyclodextrins in a spray-dryer. All extracts after the encapsulation process maintained a good antioxidant capacity, with an apparent loss in total phenolic compounds of around 20-25%. In addition, all samples showed good antimicrobial activity (MIC 5-0.625 mg/mL) against Staphylococcus aureus, which was maintained after the encapsulation process (MIC 5-1.25 mg/mL). Based on the antioxidant and antimicrobial activity results, the best-encapsulated citrus extract was selected for incorporation into a polylactic acid/polyhydroxy butyrate (PLA/PHB) film. The latter was then produced on an industrial scale by cast extrusion and was found to be suitable for food contact as it showed overall migration values in different food simulants lower than the legislative limit of 10 mg of non-volatile substances per 1 dm2 of surface area. The UHPLC-HRMS analysis, performed to evaluate the migration of the active compounds, revealed about 13.41% release in food simulant A and 11.02% in food simulant B. Antimicrobial analysis conducted directly on the film showed a growth inhibition activity towards Escherichia coli and Staphylococcus aureus equal to 30 and 60%, respectively.

6.
Polymers (Basel) ; 12(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731594

RESUMO

Polypropylene (PP) / multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt-mixing and used to manufacture samples by injection molding. The effect of processing conditions on the crystallinity and electrical resistivity was studied. Accordingly, samples were produced varying the mold temperature and injection rate, and the DC electrical resistivity was measured. The morphology of MWCNT clusters was studied by optical and electron microscopy, while X-ray diffraction was used to study the role of the crystalline structure of PP. As a result, an anisotropic electrical behavior induced by the process was observed, which is further influenced by the injection molding processing condition. It was demonstrated that a reduction of electrical resistivity can be obtained by increasing mold temperature and injection rate, which was associated to the formation of the γ-phase and the related inter-cluster morphology of the MWCNT conductive network.

7.
Polymers (Basel) ; 12(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32214000

RESUMO

The crystalline phase of poly(lactic acid) (PLA) has crucial effects on its own properties and nanocomposites. In this study, the isothermal crystallization of PLA, triethyl citrate-plasticized PLA (PLA-TEC), and its nanocomposite with chitin nanocrystals (PLA-TEC-ChNC) at different temperatures and times was investigated, and the resulting properties of the materials were characterized. Both PLA and PLA-TEC showed extremely low crystallinity at isothermal temperatures of 135, 130, 125 °C and times of 5 or 15 min. In contrast, the addition of 1 wt % of ChNCs significantly improved the crystallinity of PLA under the same conditions owing to the nucleation effect of the ChNCs. The samples were also crystallized at 110 °C to reach their maximal crystallinity, and PLA-TEC-ChNC achieved 48% crystallinity within 5 min, while PLA and PLA-TEC required 40 min to reach a similar level. Moreover, X-ray diffraction analysis showed that the addition of ChNCs resulted in smaller crystallite sizes, which further influenced the barrier properties and hydrolytic degradation of the PLA. The nanocomposites had considerably lower barrier properties and underwent faster degradation compared to PLA-TEC110. These results confirm that the addition of ChNCs in PLA leads to promising properties for packaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...