Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38822768

RESUMO

OBJECTIVE: To determine if body mass index (BMI) is predictive of adverse respiratory events (ARE) in the obese pediatric population undergoing tonsillectomy. STUDY DESIGN: Case series with chart review. SETTING: Single institution academic otolaryngology practice. METHODS: All patients 3 to 12 years old with BMI ≥95th percentile that underwent tonsillectomy March 1, 2011 to July 15, 2020 were included. The study excluded patients with comorbidities that warranted admission independent of BMI, including Trisomy 21, gross developmental delay, neuromuscular disorders, and congenital heart disease. Perioperative AREs following tonsillectomy were recorded. AREs were defined as postoperative desaturation (SpO2 < 90%), intubation, continuous positive airway pressure (CPAP), or new O2 requirement for >2 hours. RESULTS: Eighteen patients (8%) had at least 1 ARE. There were no children age 5 and older with a BMI 95th percentile to 98.9th percentile who had an early adverse respiratory outcome. Preoperative polysomnogram (PSG) metrics, obstructive apnea-hypopnea index (oAHI), and oxygen saturations (SpO2) nadir was significantly different between patients with and without AREs (mean oAHI 54.3 vs 17.4, P = .02; mean SpO2 nadir 73.1% vs 84.5%, P = .05). There was no significant difference in the BMI z score (2.88 vs 2.45, P = .09) between groups. CONCLUSION: AREs requiring inpatient management are uncommon in obese children after tonsillectomy. BMI is a poor independent indication for admission except at BMI extremes. We found significantly higher oAHI and lower SpO2 nadir on PSG indicate a higher risk for AREs and can guide admission postoperatively. There may be a subset of obese tonsillectomy patients who can be safely discharged home on the day of surgery.

2.
Nat Commun ; 12(1): 1444, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664271

RESUMO

TRPV4 is a cell surface-expressed calcium-permeable cation channel that mediates cell-specific effects on cellular morphology and function. Dominant missense mutations of TRPV4 cause distinct, tissue-specific diseases, but the pathogenic mechanisms are unknown. Mutations causing peripheral neuropathy localize to the intracellular N-terminal domain whereas skeletal dysplasia mutations are in multiple domains. Using an unbiased screen, we identified the cytoskeletal remodeling GTPase RhoA as a TRPV4 interactor. TRPV4-RhoA binding occurs via the TRPV4 N-terminal domain, resulting in suppression of TRPV4 channel activity, inhibition of RhoA activation, and extension of neurites in vitro. Neuropathy but not skeletal dysplasia mutations disrupt TRPV4-RhoA binding and cytoskeletal outgrowth. However, inhibition of RhoA restores neurite length in vitro and in a fly model of TRPV4 neuropathy. Together these results identify RhoA as a critical mediator of TRPV4-induced cell structure changes and suggest that disruption of TRPV4-RhoA binding may contribute to tissue-specific toxicity of TRPV4 neuropathy mutations.


Assuntos
Neuritos/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células COS , Cálcio/metabolismo , Linhagem Celular , Chlorocebus aethiops , Drosophila , Células HEK293 , Humanos
3.
J Biol Chem ; 295(29): 9986-9997, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32493776

RESUMO

G-protein-coupled receptors (GPCRs) are a ubiquitously expressed family of receptor proteins that regulate many physiological functions and other proteins. They act through two dissociable signaling pathways: the exchange of GDP to GTP by linked G-proteins and the recruitment of ß-arrestins. GPCRs modulate several members of the transient receptor potential (TRP) channel family of nonselective cation channels. How TRP channels reciprocally regulate GPCR signaling is less well-explored. Here, using an array of biochemical approaches, including immunoprecipitation and fluorescence, calcium imaging, phosphate radiolabeling, and a ß-arrestin-dependent luciferase assay, we characterize a GPCR-TRP channel pair, angiotensin II receptor type 1 (AT1R), and transient receptor potential vanilloid 4 (TRPV4), in primary murine choroid plexus epithelial cells and immortalized cell lines. We found that AT1R and TRPV4 are binding partners and that activation of AT1R by angiotensin II (ANGII) elicits ß-arrestin-dependent inhibition and internalization of TRPV4. Activating TRPV4 with endogenous and synthetic agonists inhibited angiotensin II-mediated G-protein-associated second messenger accumulation, AT1R receptor phosphorylation, and ß-arrestin recruitment. We also noted that TRPV4 inhibits AT1R phosphorylation by activating the calcium-activated phosphatase calcineurin in a Ca2+/calmodulin-dependent manner, preventing ß-arrestin recruitment and receptor internalization. These findings suggest that when TRP channels and GPCRs are co-expressed in the same tissues, many of these channels can inhibit GPCR desensitization.


Assuntos
Receptores de Angiotensina/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Receptores de Angiotensina/genética , Canais de Cátion TRPV/genética , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(51): 13561-13566, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203659

RESUMO

Opioids are powerful analgesics, but also carry significant side effects and abuse potential. Here we describe a modulator of the µ-opioid receptor (MOR1), the transient receptor potential channel subfamily vanilloid member 1 (TRPV1). We show that TRPV1 binds MOR1 and blocks opioid-dependent phosphorylation of MOR1 while leaving G protein signaling intact. Phosphorylation of MOR1 initiates recruitment and activation of the ß-arrestin pathway, which is responsible for numerous opioid-induced adverse effects, including the development of tolerance and respiratory depression. Phosphorylation stands in contrast to G protein signaling, which is responsible for the analgesic effect of opioids. Calcium influx through TRPV1 causes a calcium/calmodulin-dependent translocation of G protein-coupled receptor kinase 5 (GRK5) away from the plasma membrane, thereby blocking its ability to phosphorylate MOR1. Using TRPV1 to block phosphorylation of MOR1 without affecting G protein signaling is a potential strategy to improve the therapeutic profile of opioids.


Assuntos
Receptores Opioides mu/metabolismo , Canais de Cátion TRPV/metabolismo , Membrana Celular/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico
5.
J Vis Exp ; (124)2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28654029

RESUMO

G-Protein-Coupled Receptors (GPCRs) are a large family of transmembrane receptors that play critical roles in normal cellular physiology and constitute a major pharmacological target for multiple indications, including analgesia, blood pressure regulation, and the treatment of psychiatric disease. Upon ligand binding, GPCRs catalyze the activation of intracellular G-proteins by stimulating the incorporation of guanosine triphosphate (GTP). Activated G-proteins then stimulate signaling pathways that elicit cellular responses. GPCR signaling can be monitored by measuring the incorporation of a radiolabeled and non-hydrolyzable form of GTP, [35S]guanosine-5'-O-(3-thio)triphosphate ([35S]GTPγS), into G-proteins. Unlike other methods that assess more downstream signaling processes, [35S]GTPγS binding measures a proximal event in GPCR signaling and, importantly, can distinguish agonists, antagonists, and inverse agonists. The present protocol outlines a sensitive and specific method for studying GPCR signaling using crude membrane preparations of an archetypal GPCR, the µ-opioid receptor (MOR1). Although alternative approaches to fractionate cells and tissues exist, many are cost-prohibitive, tedious, and/or require non-standard laboratory equipment. The present method provides a simple procedure that enriches functional crude membranes. After isolating MOR1, various pharmacological properties of its agonist, [D-Ala, N-MePhe, Gly-ol]-enkephalin (DAMGO), and antagonist, naloxone, were determined.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Contagem de Cintilação/métodos , Guanosina 5'-O-(3-Tiotrifosfato)/análise , Células HEK293 , Humanos , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo , Transdução de Sinais , Radioisótopos de Enxofre/análise
6.
Biomaterials ; 35(5): 1439-49, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24246642

RESUMO

Bioengineered fiber substrates are increasingly studied as a means to promote regeneration and remodeling in the injured central nervous system (CNS). Previous reports largely focused on the ability of oriented scaffolds to bridge injured regions and direct outgrowth of axonal projections. In the present work, we explored the effects of electrospun microfibers on the migration and physiological properties of brain astroglial cells. Primary rat astrocytes were cultured on either fibronectin-coated poly-L-lactic acid (PLLA) films, fibronectin-coated randomly oriented PLLA electrospun fibers, or fibronectin-coated aligned PLLA electrospun fibers. Aligned PLLA fibers strongly altered astrocytic morphology, orienting cell processes, actin microfilaments, and microtubules along the length of the fibers. On aligned fibers, astrocytes also significantly increased their migration rates in the direction of fiber orientation. We further investigated if fiber topography modifies astrocytic neuroprotective properties, namely glutamate and glutamine transport and metabolism. This was done by quantifying changes in mRNA expression (qRT-PCR) and protein levels (Western blotting) for a battery of relevant biomolecules. Interestingly, we found that cells grown on random and/or aligned fibers increased the expression levels of two glutamate transporters, GLAST and GLT-1, and an important metabolic enzyme, glutamine synthetase, as compared to the fibronectin-coated films. Functional assays revealed increases in glutamate transport rates due to GLT-1 mediated uptake, which was largely determined by the dihydrokainate-sensitive GLT-1. Overall, this study suggests that aligned PLLA fibers can promote directed astrocytic migration, and, of most importance, our in vitro results indicate for the first time that electrospun PLLA fibers can positively modify neuroprotective properties of glial cells by increasing rates of glutamate uptake.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/fisiologia , Fibronectinas/química , Ácido Glutâmico/metabolismo , Ácido Láctico/química , Polímeros/química , Animais , Astrócitos/citologia , Adesão Celular , Células Cultivadas , Poliésteres , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...