Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(1): e0309322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36598194

RESUMO

Small bacterial regulatory RNAs (sRNAs) have been implicated in the regulation of numerous metabolic pathways. In most of these studies, sRNA-dependent regulation of mRNAs or proteins of enzymes in metabolic pathways has been predicted to affect the metabolism of these bacteria. However, only in a very few cases has the role in metabolism been demonstrated. Here, we performed a combined transcriptome and metabolome analysis to define the regulon of the sibling sRNAs NgncR_162 and NgncR_163 (NgncR_162/163) and their impact on the metabolism of Neisseria gonorrhoeae. These sRNAs have been reported to control genes of the citric acid and methylcitric acid cycles by posttranscriptional negative regulation. By transcriptome analysis, we now expand the NgncR_162/163 regulon by several new members and provide evidence that the sibling sRNAs act as both negative and positive regulators of target gene expression. Newly identified NgncR_162/163 targets are mostly involved in transport processes, especially in the uptake of glycine, phenylalanine, and branched-chain amino acids. NgncR_162/163 also play key roles in the control of serine-glycine metabolism and, hence, probably affect biosyntheses of nucleotides, vitamins, and other amino acids via the supply of one-carbon (C1) units. Indeed, these roles were confirmed by metabolomics and metabolic flux analysis, which revealed a bipartite metabolic network with glucose degradation for the supply of anabolic pathways and the usage of amino acids via the citric acid cycle for energy metabolism. Thus, by combined deep RNA sequencing (RNA-seq) and metabolomics, we significantly extended the regulon of NgncR_162/163 and demonstrated the role of NgncR_162/163 in the regulation of central metabolic pathways of the gonococcus. IMPORTANCE Neisseria gonorrhoeae is a major human pathogen which infects more than 100 million people every year. An alarming development is the emergence of gonococcal strains that are resistant against virtually all antibiotics used for their treatment. Despite the medical importance and the vanishing treatment options of gonococcal infections, the bacterial metabolism and its regulation have been only weakly defined until today. Using RNA-seq, metabolomics, and 13C-guided metabolic flux analysis, we here investigated the gonococcal metabolism and its regulation by the previously studied sibling sRNAs NgncR_162/163. The results demonstrate the regulation of transport processes and metabolic pathways involved in the biosynthesis of nucleotides, vitamins, and amino acids by NgncR_162/163. In particular, the combination of transcriptome and metabolic flux analyses provides a heretofore unreached depth of understanding the core metabolic pathways and their regulation by the neisserial sibling sRNAs. This integrative approach may therefore also be suitable for the functional analysis of a growing number of other bacterial metabolic sRNA regulators.


Assuntos
Neisseria gonorrhoeae , Pequeno RNA não Traduzido , Humanos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Irmãos , Bactérias/genética , Redes e Vias Metabólicas/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Nucleotídeos/metabolismo , Aminoácidos/metabolismo , Vitaminas , Regulação Bacteriana da Expressão Gênica
2.
Microbiology (Reading) ; 167(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34515630

RESUMO

Non-coding regulatory RNAs mediate post-transcriptional gene expression control by a variety of mechanisms relying mostly on base-pairing interactions with a target mRNA. Though a plethora of putative non-coding regulatory RNAs have been identified by global transcriptome analysis, knowledge about riboregulation in the pathogenic Neisseriae is still limited. Here we report the initial characterization of a pair of sRNAs of N. gonorrhoeae, TfpR1 and TfpR2, which exhibit a similar secondary structure and identical single-stranded seed regions, and therefore might be considered as sibling sRNAs. By combination of in silico target prediction and sRNA pulse expression followed by differential RNA sequencing we identified target genes of TfpR1 which are involved in type IV pilus biogenesis and DNA damage repair. We provide evidence that members of the TfpR1 regulon can also be targeted by the sibling TfpR2.


Assuntos
Neisseria gonorrhoeae , Pequeno RNA não Traduzido , Regulação Bacteriana da Expressão Gênica , Humanos , Neisseria gonorrhoeae/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA , Irmãos
3.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748390

RESUMO

Measles virus (MeV), like all viruses of the order Mononegavirales, utilizes a complex consisting of genomic RNA, nucleoprotein, the RNA-dependent RNA polymerase, and a polymerase cofactor, the phosphoprotein (P), for transcription and replication. We previously showed that a recombinant MeV that does not express another viral protein, C, has severe transcription and replication deficiencies, including a steeper transcription gradient than the parental virus and generation of defective interfering RNA. This virus is attenuated in vitro and in vivo However, how the C protein operates and whether it is a component of the replication complex remained unclear. Here, we show that C associates with the ribonucleocapsid and forms a complex that can be purified by immunoprecipitation or ultracentrifugation. In the presence of detergent, the C protein is retained on purified ribonucleocapsids less efficiently than the P protein and the polymerase. The C protein is recruited to the ribonucleocapsid through its interaction with the P protein, as shown by immunofluorescence microscopy of cells expressing different combinations of viral proteins and by split luciferase complementation assays. Forty amino-terminal C protein residues are dispensable for the interaction with P, and the carboxyl-terminal half of P is sufficient for the interaction with C. Thus, the C protein, rather than being an "accessory" protein as qualified in textbooks so far, is a ribonucleocapsid-associated protein that interacts with P, thereby increasing replication accuracy and processivity of the polymerase complex.IMPORTANCE Replication of negative-strand RNA viruses relies on two components: a helical ribonucleocapsid and an RNA-dependent RNA polymerase composed of a catalytic subunit, the L protein, and a cofactor, the P protein. We show that the measles virus (MeV) C protein is an additional component of the replication complex. We provide evidence that the C protein is recruited to the ribonucleocapsid by the P protein and map the interacting segments of both C and P proteins. We conclude that the primary function of MeV C is to improve polymerase processivity and accuracy, rather than uniquely to antagonize the type I interferon response. Since most viruses of the Paramyxoviridae family express C proteins, their primary function may be conserved.


Assuntos
Vírus do Sarampo/metabolismo , Nucleoproteínas/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/genética , Animais , Proteínas de Transporte , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Sarampo/virologia , Vírus do Sarampo/genética , Proteínas do Nucleocapsídeo , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , RNA Polimerase Dependente de RNA/metabolismo , Células Vero , Proteínas não Estruturais Virais/fisiologia , Proteínas Virais/metabolismo , Ativação Viral/genética , Replicação Viral/genética
4.
Microbiology (Reading) ; 163(11): 1720-1734, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29058643

RESUMO

Neisseria gonorrhoeae is the causative agent of gonorrhoea, the second most common bacterial sexually transmitted disease. Riboregulation mediated by small regulatory RNAs (sRNAs) is increasingly recognized as an important means of gene expression control in this human-restricted pathogen. sRNAs act at the post-transcriptional level by base-pairing with their target mRNAs which affects translation initiation and/or mRNA stability. In this study we initiated the characterization of a pair of highly conserved sRNAs of N. gonorrhoeae which exhibit redundant functions in the control of a common set of target genes. The identified targets of the sibling sRNAs NgncR_162 and NgncR_163 participate in basic metabolic processes including the methylcitrate and citrate cycle, aa uptake and degradation, and also in transcription regulation. Our data indicate that the sibling sRNAs control their targets via direct base-pairing between the same single-stranded domain(s) of the sRNA and the ribosome binding site in the 5'-untranslated region of the mRNA.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Neisseria gonorrhoeae/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Regiões 5' não Traduzidas/genética , Sítios de Ligação , Redes Reguladoras de Genes , Genes Bacterianos/genética , Redes e Vias Metabólicas/genética , Mutação , Neisseria gonorrhoeae/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/classificação , Sequências Reguladoras de Ácido Ribonucleico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...