Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pathogens ; 12(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111449

RESUMO

Chickpea is susceptible to fungal infection and mycotoxin contamination. Argentina exports most of its chickpea production; thus, its quality is of concern. The Alternaria fungal genus was found to be prevalent in chickpea samples from Argentina. The species within this genus are able to produce mycotoxins, such as alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TA). In this context, we evaluated the effect of water activity (0.99, 0.98, 0.96, 0.95, 0.94, 0.92, and 0.90 aW), temperature (4, 15, 25, and 30 °C), incubation time (7, 14, 21, and 28 days), and their interactions on mycelial growth and AOH, AME, and TA production on chickpea-based medium by two A. alternata strains and one A. arborescens strain isolated from chickpea in Argentina. Maximum growth rates were obtained at the highest aW (0.99) and 25 °C, with growth decreasing as the aW of the medium and the temperature were reduced. A. arborescens grew significantly faster than A. alternata. Mycotoxin production was affected by both variables (aW and temperature), and the pattern obtained was dependent on the strains/species evaluated. In general, both A. alternata strains produced maximum amounts of AOH and AME at 30 °C and 0.99-0.98 aW, while for TA production, both strains behaved completely differently (maximum levels at 25 °C and 0.96 aW for one strain and 30 °C and 0.98 aW for the other). A. arborescens produced maximum amounts of the three toxins at 25 °C and 0.98 aW. Temperature and aW conditions for mycotoxin production were slightly narrower than those for growth. Temperature and aW conditions assayed are those found during chickpea grain development in the field, and also could be present during storage. This study provides useful data on the conditions representing a risk for contamination of chickpea by Alternaria toxins.

2.
Toxins (Basel) ; 14(7)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35878237

RESUMO

Fusarium graminearum sensu stricto is, worldwide, the main causal agent of Fusarium head blight in small cereal crops such as wheat, barley, and oat. The pathogen causes not only reductions in yield and grain quality but also contamination with type-B trichothecenes such as deoxynivalenol. Prevention strategies include the use of less susceptible cultivars through breeding programs, cultural practices, crop rotation, fungicide application, or a combination of them through an integrated pest management. Additionally, the use of more eco-friendly strategies by the evaluation of microorganisms and natural products is increasing. The effect of combining Bacillus velezensis RC218 and chitosan on Fusarium Head Blight (FHB) and deoxynivalenol accumulation under greenhouse and field conditions in bread and durum wheat was evaluated. Under greenhouse conditions, both B. velezensis RC218 and chitosan (0.1%) demonstrated FHB control, diminishing the severity by 38 and 27%, respectively, while the combined treatment resulted in an increased reduction of 54% on bread wheat. Field trials on bread wheat showed a biocontrol reduction in FHB by 18 to 53%, and chitosan was effective only during the first year (48% reduction); surprisingly, the combination of these active principles allowed the control of FHB disease severity by 39 and 36.7% during the two harvest seasons evaluated (2017/18, 2018/19). On durum wheat, the combined treatment showed a 54.3% disease severity reduction. A reduction in DON accumulation in harvested grains was observed for either bacteria, chitosan, or their combination, with reductions of 50.3, 68, and 64.5%, respectively, versus the control.


Assuntos
Quitosana , Fusarium , Tricotecenos , Bacillus , Pão , Quitosana/farmacologia , Grão Comestível/química , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Tricotecenos/análise , Triticum/microbiologia
4.
Rev Argent Microbiol ; 53(1): 64-74, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32593584

RESUMO

Fumonisin occurrence was reported in wheat grains and F. proliferatum has been suggested to be the main contributor to its presence in wheat. Thus, a survey was performed in order to study the impact of four commercial fungicides used in Argentina for controlling Fusarium head blight disease (epoxiconazole+metconazole, tebuconazole, pyraclostrobin+epoxiconazole, and prothioconazole) on growth and fumonisin production of two F. proliferatum strains in relation to water activity (aW; 0.99, 0.97, 0.95) and temperature (15°C and 25°C). Most fungicides reduced growth rates when compared to the control (reduction increased as fungicide concentration increased), and reduced fumonisin production when they were used at high doses; however, most fungicides enhanced fumonisin production at sublethal doses, with the exception of prothioconazole. Thus, fungicides used for FHB management could enhance fumonisin production by F. proliferatum strains present in wheat grains.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Fungicidas Industriais/farmacologia , Triticum
5.
Pathogens ; 8(1)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841490

RESUMO

The objectives of the present study were to determine the combined effects of chitosan and water activity (aW) on growth and mycotoxin production in situ on the two most important Fusarium species (F. proliferatum and F. verticillioides) present on maize, and on F. graminearum, the main pathogen causing Fusarium head blight on wheat. Results showed that low-molecular-weight chitosan with more than 70% deacetylation at the lowest dose used (0.5 mg/g) was able to reduce deoxynivalenol (DON) and fumonisin (FBs) production on irradiated maize and wheat grains. Growth rates of F. graminearum also decreased at the lowest chitosan dose used (0.5 mg/g), while F. verticillioides and F. proliferatum growth rates were reduced at 0.98 aW at the highest chitosan dose used (2 mg/g). Since mycotoxins are unavoidable contaminants in food and feed chains, their presence needs to be reduced in order to minimize their effects on human and animal health and to diminish the annual market loss through rejected maize and wheat; in this scenario, pre- and post-harvest use of chitosan could be an important alternative.

6.
Int J Food Microbiol ; 185: 51-6, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24929683

RESUMO

The objectives of the present study were to determine the in vitro efficacy of chitosan (0.5, 1.0, 2.0 and 3.0mg/mL) under different water availabilities (0.995, 0.99, 0.98, 0.96 and 0.93) at 25°C on lag phase, growth rate and fumonisin production by isolates of Fusarium verticillioides and Fusarium proliferatum. The presence of chitosan affected growth and fumonisin production, and this effect was dependent on the dose and aW treatment used. The presence of chitosan increased the lag phase, and reduced the growth rate of both Fusarium species significantly at all concentrations used, especially at 0.93 aW. Also, significant reduction of fumonisin production was observed in both Fusarium species at all conditions assayed. The present study has shown the combined effects of chitosan and aW on growth and fumonisin production by the two most important Fusarium species present on maize. Low molecular weight (Mw) chitosan with more than 70% of degree of deacetylation (DD) at 0.5mg/mL was able to significantly reduce growth rate and fumonisin production on maize-based media, with maximum levels of reduction in both parameters obtained at the highest doses used. As fumonisins are unavoidable contaminants in food and feed chains, their presence needs to be reduced to minimize their effects on human and animal health and to diminish the annual market loss through rejected maize. In this scenario post-harvest use of chitosan could be an important alternative treatment.


Assuntos
Quitosana/farmacologia , Fumonisinas/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Água/farmacologia , Zea mays/microbiologia , Animais , Fumonisinas/análise , Fusarium/crescimento & desenvolvimento , Humanos
7.
Talanta ; 116: 964-71, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24148502

RESUMO

We have developed an electroanalytical method to quantify different isomers of tocopherols in edible vegetable oils. The method uses the square wave voltammetry on a carbon fiber disk ultramicroelectrode in benzene/ethanol+0.1 mol L(-1)H2SO4. Because the oxidation peaks of these natural antioxidants show an important overlapping, we have used two chemometric tools to obtain the multivariate calibration model. One method was the multivariate curve resolution-alternating least square (MCR-ALS), which assumes a linear behavior, i.e., the total signal is the sum of individual signals of components, and another nonlinear method such as artificial neuronal networks (ANNs). From the accuracy and precision analysis between nominal and estimated concentrations by both methods, we could infer that the ANNs method was a good model to quantify tocopherols in edible oil samples. Recovery percentages were between 94% and 99%. In addition, we found a difference of 1.4-6.8% between the total content of tocopherols in edible oil samples and the vitamin E content declared by the manufacturers.


Assuntos
Algoritmos , Óleos de Plantas/química , Tocoferóis/análise , Benzeno/química , Calibragem , Técnicas Eletroquímicas , Etanol/química , Análise dos Mínimos Quadrados , Microeletrodos , Redes Neurais de Computação , Oxirredução , Estereoisomerismo , Ácidos Sulfúricos/química , Tocoferóis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...