Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 24(13): 2963-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24835983

RESUMO

Modification of a series of P2Y12 receptor antagonists by replacement of the ester functionality was aimed at minimizing the risk of in vivo metabolic instability and pharmacokinetic variability. The resulting ketones were then optimized for their P2Y12 antagonistic and anticoagulation effects in combination with their physicochemical and absorption profiles. The most promising compound showed very potent antiplatelet action in vivo. However, pharmacodynamic-pharmacokinetic analysis did not reveal a significant separation between its anti-platelet and bleeding effects. The relevance of receptor binding kinetics to the in vivo profile is described.


Assuntos
Plaquetas/efeitos dos fármacos , Fibrinolíticos/farmacologia , Cetonas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Receptores Purinérgicos P2Y12/metabolismo , Animais , Células CHO , Células CACO-2 , Cricetulus , Cães , Relação Dose-Resposta a Droga , Fibrinolíticos/administração & dosagem , Fibrinolíticos/química , Humanos , Cetonas/administração & dosagem , Cetonas/química , Cinética , Estrutura Molecular , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/química , Relação Estrutura-Atividade
2.
J Med Chem ; 56(17): 7015-24, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23899349

RESUMO

Synthesis and structure-activity relationships of ethyl 6-aminonicotinate acyl sulfonamides, which are potent antagonists of the P2Y12 receptor, are presented. Shifting from 5-chlorothienyl to benzyl sulfonamides significantly increased the potency in the residual platelet count assay. Evaluation of PK parameters in vivo in dog for six compounds showed a 10-fold higher clearance for the azetidines than for the matched-pair piperidines. In a modified Folts model in dog, both piperidine 3 and azetidine 13 dose-dependently induced increases in blood flow and inhibition of ADP-induced platelet aggregation with antithrombotic ED50 values of 3.0 and 10 µg/kg/min, respectively. The doses that induced a larger than 3-fold increase in bleeding time were 33 and 100 µg/kg/min for 3 and 13, respectively. Thus, the therapeutic index (TI) was ≥ 10 for both compounds. On the basis of these data, compound 3 was progressed into human clinical trials as candidate drug AZD1283.


Assuntos
Niacina/análogos & derivados , Receptores Purinérgicos P2Y12/efeitos dos fármacos , Sulfonamidas/farmacologia , Trombose/prevenção & controle , Animais , Células CHO , Cricetinae , Cricetulus , Cães , Humanos , Niacina/farmacologia
3.
Thromb Res ; 131(4): 313-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23419412

RESUMO

INTRODUCTION: With the arrival of the potent P2Y12 antagonists, ticagrelor and prasugrel, the need for co-treatment with aspirin in acute coronary syndromes must be re-examined. This study assessed whether high-dose aspirin: a) provides additional anti-platelet efficacy, assessed in vivo and ex vivo, when combined with P2Y12 inhibition; and/or b) has a negative effect on vascular function. MATERIALS AND METHODS: Using an anaesthetized dog model of thrombosis, the effects of aspirin (50mg/kg) in addition to clopidogrel and ticagrelor were evaluated at two levels of P2Y12 inhibition, maximal (≥96%) and sub-maximal (~80%), as assessed by ex vivo ADP-induced whole blood impedence aggregometry. RESULTS: In the absence of aspirin, maximal and sub-maximal P2Y12 inhibition inhibited arachidonic acid-induced platelet aggregation by approximately 80% and 24%, respectively, without affecting platelet TXA2 formation. During maximal P2Y12 inhibition, aspirin provided less additional inhibition of ex vivo arachidonic acid- and collagen-induced platelet aggregation, as compared with sub-maximal P2Y12 inhibition, without additional anti-thrombotic effect in vivo. Aspirin significantly decreased in vivo PGI2 production (27%) and increased vascular resistance (16%), independently of P2Y12 antagonism. CONCLUSION: In the dog, P2Y12 antagonists inhibit TXA2-mediated platelet-aggregation independently of aspirin. Aspirin provides less additional anti-platelet effects during maximal compared with sub-maximal P2Y12 inhibition but increases vascular resistance.


Assuntos
Aspirina/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Ácido Araquidônico/farmacologia , Clopidogrel , Cães , Relação Dose-Resposta a Droga , Masculino , Trombose/tratamento farmacológico , Ticagrelor , Ticlopidina/análogos & derivados , Ticlopidina/farmacologia , Resistência Vascular/efeitos dos fármacos
4.
J Pharm Sci ; 100(6): 2194-202, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21491443

RESUMO

Drug solubility is an important issue when progressing investigational compounds into clinical candidates. The present paper describes the development and characterization of a nanosuspension that was formulated to overcome problems with poor water solubility and possible adverse events caused by cosolvent mixtures, using ticagrelor as a model compound. A homogeneous nanosuspension of ticagrelor was formed using a wet milling approach, which yielded particle sizes around 230 nm. The nanosuspensions were chemically stable for at least 10 months at both room temperature and when refrigerated, and physically (i.e., particle size) stable for at least 10 months under refrigeration, and approximately 3 years at room temperature and when frozen. One rat model and two dog models were used to assess the pharmacokinetics and hemodynamic-related effects following intravenous administration of nanoparticles. There were no biologically consistent or dose-dependent effects of the nanoparticles on the hemodynamic parameters tested, that is, heart rate, mean aortic pressure, cardiac output, left femoral artery blood flow, or cardiac inotropy (measured as max dP/dt). In conclusion, a stable ticagrelor nanosuspension formulation was developed, suitable for intravenous administration. At the doses evaluated, this formulation was without hemodynamic effects in three sensitive preclinical models.


Assuntos
Adenosina/análogos & derivados , Hemodinâmica/efeitos dos fármacos , Nanopartículas/química , Adenosina/administração & dosagem , Adenosina/química , Adenosina/farmacologia , Animais , Química Farmacêutica , Cristalização , Cães , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Infusões Intravenosas , Masculino , Nanopartículas/administração & dosagem , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade , Ticagrelor , Difração de Raios X
5.
Thromb Res ; 124(5): 565-71, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19692114

RESUMO

Ticagrelor (AZD6140), the first reversibly binding oral P2Y(12) receptor antagonist, blocks adenosine diphosphate (ADP)-induced platelet aggregation via a mode of action distinct from that of thienopyridine antiplatelet agents. The latter must be metabolically activated and binds irreversibly to P2Y(12) for the life of the platelet, precluding restoration of hemostatic function without the generation of new platelets. In in vitro studies comparing binding characteristics of ticagrelor and compound 105, a chemical compound indistinguishable from the active metabolite of prasugrel, ticagrelor exhibited 1) an approximately 100-fold higher affinity for P2Y(12) and rapid achievement of equilibrium (vs no equilibrium reached with compound 105) as assessed by radioligand displacement in a receptor filtration binding assay, 2) 48-fold greater potency in a functional receptor assay using recombinant human P2Y(12), and 3) 63-fold greater potency in inhibiting ADP-induced aggregation in washed human platelets. In rat and dog models of thrombosis/hemostasis, there was greater separation between doses that provided antithrombotic effect and those that increased bleeding for ticagrelor compared with clopidogrel and compound 072, a chemical compound indistinguishable from the prasugrel parent compound. The ratio of dose resulting in 3-fold increase in bleeding time to dose resulting in 50% restoration of blood flow in rats was 9.7 for ticagrelor compared with 2.0 for clopidogrel and 1.4 for compound 072. Similar results were observed in dogs. Our findings suggest that reversibility of P2Y(12) binding with ticagrelor may account for the greater separation between antithrombotic effects and increased bleeding compared with the irreversible binding of clopidogrel and prasugrel.


Assuntos
Adenosina/análogos & derivados , Hemostasia/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2 , Piridinas/farmacologia , Trombose/tratamento farmacológico , Adenosina/farmacologia , Animais , Células CHO , Clopidogrel , Cricetinae , Cricetulus , Modelos Animais de Doenças , Cães , Humanos , Piperazinas/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/sangue , Cloridrato de Prasugrel , Ratos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y12 , Tiofenos/farmacologia , Trombose/sangue , Ticagrelor , Ticlopidina/análogos & derivados , Ticlopidina/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA