Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 21(3): 32, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30790200

RESUMO

This manuscript represents the perspective of the Dissolution Working Group of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) and of two focus groups of the American Association of Pharmaceutical Scientists (AAPS): Process Analytical Technology (PAT) and In Vitro Release and Dissolution Testing (IVRDT). The intent of this manuscript is to show recent progress in the field of in vitro predictive dissolution modeling and to provide recommended general approaches to developing in vitro predictive dissolution models for both early- and late-stage formulation/process development and batch release. Different modeling approaches should be used at different stages of drug development based on product and process understanding available at those stages. Two industry case studies of current approaches used for modeling tablet dissolution are presented. These include examples of predictive model use for product development within the space explored during formulation and process optimization, as well as of dissolution models as surrogate tests in a regulatory filing. A review of an industry example of developing a dissolution model for real-time release testing (RTRt) and of academic case studies of enabling dissolution RTRt by near-infrared spectroscopy (NIRS) is also provided. These demonstrate multiple approaches for developing data-rich empirical models in the context of science- and risk-based process development to predict in vitro dissolution. Recommendations of modeling best practices are made, focused primarily on immediate-release (IR) oral delivery products for new drug applications. A general roadmap is presented for implementation of dissolution modeling for enhanced product understanding, robust control strategy, batch release testing, and flexibility toward post-approval changes.


Assuntos
Química Farmacêutica/métodos , Desenvolvimento de Medicamentos/métodos , Liberação Controlada de Fármacos , Modelos Biológicos , Administração Oral , Cápsulas , Comprimidos
2.
Drug Dev Ind Pharm ; 40(6): 829-37, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23638984

RESUMO

OBJECTIVE: The objective of this study was to determine the impact that the micro-environment, as measured by PyroButton data loggers, experienced by tablets during the pan coating unit operation had on the layer adhesion of bilayer tablets in open storage conditions. MATERIALS AND METHODS: A full factorial design of experiments (DOE) with three center points was conducted to study the impact of final tablet hardness, film coating spray rate and film coating exhaust temperature on the delamination tendencies of bilayer tablets. PyroButton data loggers were placed (fixed) at various locations in a pan coater and were also allowed to freely move with the tablet bed to measure the micro-environmental temperature and humidity conditions of the tablet bed. RESULTS: The variance in the measured micro-environment via PyroButton data loggers accounted for 75% of the variance in the delamination tendencies of bilayer tablets on storage (R(2 )= 0.75). A survival analysis suggested that tablet hardness and coating spray rate significantly impacted the delamination tendencies of the bilayer tablets under open storage conditions. The coating exhaust temperature did not show good correlation with the tablets' propensity to crack indicating that it was not representative of the coating micro-environment. Models created using data obtained from the PyroButton data loggers outperformed models created using primary DOE factors in the prediction of bilayer tablet strength, especially upon equipment or scale transfers. CONCLUSION: The coating micro-environment experienced by tablets during the pan coating unit operation significantly impacts the strength of the bilayer interface of tablets on storage.


Assuntos
Combinação de Medicamentos , Composição de Medicamentos/métodos , Comprimidos/química , Comprimidos/normas , Termodinâmica , Composição de Medicamentos/normas , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Excipientes/química , Dureza , Modelos Químicos
3.
J Pharm Sci ; 101(8): 2917-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22570275

RESUMO

The fluid bed granulation and drying unit operation were used as a case study for control systems implementation. This single processor was used to blend, granulate, dry, and cool the materials. The current study demonstrated control of each of the phases using a fully automated, hybrid control system that incorporated first-principle modeling, empirical design of experiments (DOE), and process analytical technology to assure the production of constant product quality. The system allowed data to be collected efficiently for the development of a rigorous design space that combined formulation factors, process factors, and their interactions to define a tolerance surface where risk of future product failure was significantly reduced. The DOE incorporated microcrystalline cellulose and lactose monohydrate, excipients with substantially different wetting properties, to elucidate the relationship between the critical process parameters of the unit operation and the material properties of the formulation components. The extended analysis of covariance model enabled these factors and their interaction terms to be described in a single model. The results indicate that the development of a tolerance interval-based weighted design space can enhance product understanding and thereby help to assure future product quality.


Assuntos
Celulose/química , Composição de Medicamentos/métodos , Excipientes/química , Lactose/química , Modelos Químicos , Modelos Estatísticos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...