Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Brain Dis ; 39(5): 855-869, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733546

RESUMO

Intellectual disability is a heterogeneous disorder, diagnosed using intelligence quotient (IQ) score criteria. Currently, no specific clinical test is available to diagnose the disease and its subgroups due to inadequate understanding of the pathophysiology. Therefore, current study was designed to explore the molecular mechanisms involved in disease perturbation, and to identify potential biomarkers for disease diagnosis and prognosis. A total of 250 participants were enrolled in this study, including 200 intellectually disabled (ID) subjects from the subgroups (mild, moderate, and severe) with age and gender matched healthy controls (n = 50). Initially, IQ testing score and biochemical profile of each subject was generated, followed by label-free quantitative proteomics of subgroups of IQ and healthy control group through nano-LC/MS- mass spectrometry. A total of 310 proteins were identified, among them198 proteins were common among all groups. Statistical analysis (ANOVA) of the subgroups of ID showed 142 differentially expressed proteins, in comparison to healthy control group. From these, 120 proteins were found to be common among all subgroups. The remaining 22 proteins were categorized as exclusive proteins found only in disease subgroups. Furthermore, the hierarchical cluster analysis (HCL) of common significant proteins was also performed, followed by PANTHER protein classification and GO functional enrichment analysis. Results provides that the datasets of differentially expressed proteins, belong to the categories of immune / defense proteins, transfer carrier proteins, apolipoproteins, complement proteins, protease inhibitors, hemoglobin proteins etc., they are known to involvein immune system, and complement and coagulation pathway cascade and cholesterol metabolism pathway. Exclusively expressed 22 proteins were found to be disease stage specific and strong PPI network specifically those that have significant role in platelets activation and degranulation, such as Filamin A (FLNA). Furthermore, to validate the mass spectrometric findings, four highly significant proteins (APOA4, SAP, FLNA, and SERPING) were quantified by ELISA in all the study subjects. AUROC analysis showed a significant association of APOA4 (0.830), FLNA (0.958), SAP (0.754) and SERPING (0.600) with the disease. Apolipoprotein A4 (APOA4) has a significant role in cholesterol transport, and in modulation of glucose and lipid metabolism in the CNS. Similarly, FLNA has a crucial role in the nervous system, especially in the functioning of synaptic network. Therefore, both APOA4, and FLNA proteins represent good potential for candidate biomarkers for the diagnosis and prognosis of the intellectual disability. Overall, serum proteome of ID patients provides valuable information of proteins/pathways that are altered during ID progression.


Assuntos
Colesterol , Deficiência Intelectual , Proteômica , Humanos , Deficiência Intelectual/sangue , Masculino , Proteômica/métodos , Feminino , Colesterol/sangue , Adolescente , Biomarcadores/sangue , Criança , Adulto Jovem , Proteínas do Sistema Complemento/metabolismo , Coagulação Sanguínea/fisiologia , Adulto
2.
J Biomed Mater Res A ; 112(7): 1041-1056, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38380793

RESUMO

Extracellular matrix-based bio-scaffolds are useful for tissue engineering as they retain the unique structural, mechanical, and physiological microenvironment of the tissue thus facilitating cellular attachment and matrix activities. However, considering its potential, a comprehensive understanding of the protein profile remains elusive. Herein, we evaluate the impact of decellularization on the human amniotic membrane (hAM) based on its proteome profile, physicochemical features, as well as the attachment, viability, and proliferation of umbilical cord-derived mesenchymal stem cells (hUC-MSC). Proteome profiles of decellularized hAM (D-hAM) were compared with hAM, and gene ontology (GO) enrichment analysis was performed. Proteomic data revealed that D-hAM retained a total of 249 proteins, predominantly comprised of extracellular matrix proteins including collagens (collagen I, collagen IV, collagen VI, collagen VII, and collagen XII), proteoglycans (biglycan, decorin, lumican, mimecan, and versican), glycoproteins (dermatopontin, fibrinogen, fibrillin, laminin, and vitronectin), and growth factors including transforming growth factor beta (TGF-ß) and fibroblast growth factor (FGF) while eliminated most of the intracellular proteins. Scanning electron microscopy was used to analyze the epithelial and basal surfaces of D-hAM. The D-hAM displayed variability in fibril morphology and porosity as compared with hAM, showing loosely packed collagen fibers and prominent large pore areas on the basal side of D-hAM. Both sides of D-hAM supported the growth and proliferation of hUC-MSC. Comparative investigations, however, demonstrated that the basal side of D-hAM displayed higher hUC-MSC proliferation than the epithelial side. These findings highlight the importance of understanding the micro-environmental differences between the two sides of D-hAM while optimizing cell-based therapeutic applications.


Assuntos
Âmnio , Células-Tronco Mesenquimais , Proteoma , Cordão Umbilical , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Âmnio/citologia , Âmnio/química , Âmnio/metabolismo , Cordão Umbilical/citologia , Proteoma/análise , Proliferação de Células , Matriz Extracelular Descelularizada/química , Materiais Biocompatíveis/química
3.
Microbiol Spectr ; 11(6): e0193023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37861330

RESUMO

IMPORTANCE: Multi-drug resistance (MDR) by virtue of evolving resistance and virulence mechanisms among A. baumannii is a global concern which is responsible for lethal hospital-acquired infections. Therefore, it is crucial to develop new therapeutics against it. Metal complexes are compact structures with diverse mechanisms that the pathogens cannot evade easily which make them a strong drug candidate. In this study, we assessed the in vitro and in vivo efficacy of lithium complex {[Li(phen)2 sal]} against biofilm-forming MDR A. baumannii. The lithium complex displayed strong antimicrobial activity and reduced the pre-formed mature biofilm which is key barrier for antimicrobial action. Moreover, it employs oxidative stress as one of its mode of actions and causes cellular rupturing. Lithium complex was non-toxic and was significantly effective to overcome pneumonia in mice model. These results highlight the untapped potential of metal complexes that can be explored and utilized for combating notorious A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Complexos de Coordenação , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Lítio/farmacologia , Farmacorresistência Bacteriana Múltipla , Complexos de Coordenação/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Anti-Infecciosos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
4.
Mol Cell Biochem ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410210

RESUMO

Genetic polymorphisms of apolipoprotein B gene (APOB) may result into serum proteomic perturbance in Coronary Artery Disease (CAD). The current case-control cohort of Pakistani subjects was designed to analyze the genetic influence of APOB rs1042031, (G/T) genotype on serum proteome. Subjects were categorized into two groups: CAD patients (n = 480) and healthy individuals (n = 220). For genotyping, tetra ARMS-PCR was carried out and validated through sequencing, whereas LC/MS-based proteomic analysis of serum samples was performed through label-free quantification. In initial step of genotyping, the frequencies of each genotype GG, GT, and TT were 70%, 27%, and 30% in CAD patients, while in control group, the subjects were 52%, 43%, and 5%, respectively, in CAD patients. The genotypic frequencies in patients vs. control groups found significantly different (p = 0.004), and a strong association of dominant alleles GG with the CAD was observed in both dominant (OR: 2.4 (1.71-3.34), p = 0.001) and allelic genetic models (OR: 2.0 (1.45-2.86), p = 0.001). In second step of label-free quantitation, a total of 40 significant proteins were found with altered expression in CAD patients. The enriched Gene Ontology (GO) terms of molecular functions and pathways of these protein showed upregulated pathways as follows: chylomicron remodeling and assembly, complement cascade activation, plasma lipoprotein assembly, apolipoprotein-A receptor binding, and metabolism of fat-soluble vitamins in G allele carrier of rs1042031 (G > T) vs. mutant T-allele carriers. This study provides better understanding of CAD pathobiology by proteogenomics of APOB. It evidences the influence of APOB rs1042031-dominant (GG) genotype with CAD patients.

5.
Sci Rep ; 11(1): 22766, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815491

RESUMO

In the current study, APOB (rs1052031) genotype-guided proteomic analysis was performed in a cohort of Pakistani population. A total of 700 study subjects, including Coronary Artery Disease (CAD) patients (n = 480) and healthy individuals (n = 220) as a control group were included in the study. Genotyping was carried out by using tetra primer-amplification refractory mutation system-based polymerase chain reaction (T-ARMS-PCR) whereas mass spectrometry (Orbitrap MS) was used for label free quantification of serum samples. Genotypic frequency of GG genotype was found to be 90.1%, while 6.4% was for GA genotype and 3.5% was for AA genotypes in CAD patients. In the control group, 87.2% healthy subjects were found to have GG genotype, 11.8% had GA genotype, and 0.9% were with AA genotypes. Significant (p = 0.007) difference was observed between genotypic frequencies in the patients and the control group. The rare allele AA was found to be strongly associated with the CAD [OR: 4 (1.9-16.7)], as compared to the control group in recessive genetic model (p = 0.04). Using label free proteomics, altered expression of 60 significant proteins was observed. Enrichment analysis of these protein showed higher number of up-regulated pathways, including phosphatidylcholine-sterol O-acyltransferase activator activity, cholesterol transfer activity, and sterol transfer activity in AA genotype of rs562338 (G>A) as compared to the wild type GG genotype. This study provides a deeper insight into CAD pathobiology with reference to proteogenomics, and proving this approach as a good platform for identifying the novel proteins and signaling pathways in relation to cardiovascular diseases.


Assuntos
Apolipoproteína B-100/genética , Doença da Artéria Coronariana/patologia , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteogenômica/métodos , Proteoma/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/análise , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...