Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(4): e202315146, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37953459

RESUMO

The chiral-induced spin selectivity effect (CISS) is a breakthrough phenomenon that has revolutionized the field of electrocatalysis. We report the first study on the electron spin-dependent electrocatalysis for the oxygen reduction reaction, ORR, using iron phthalocyanine, FePc, a well-known molecular catalyst for this reaction. The FePc complex belongs to the non-precious catalysts group, whose active site, FeN4, emulates catalytic centers of biocatalysts such as Cytochrome c. This study presents an experimental platform involving FePc self-assembled to a gold electrode surface using chiral peptides (L and D enantiomers), i.e., chiro-self-assembled FePc systems (CSAFePc). The chiral peptides behave as spin filters axial ligands of the FePc. One of the main findings is that the peptides' handedness and length in CSAFePc can optimize the kinetics and thermodynamic factors governing ORR. Moreover, the D-enantiomer promotes the highest electrocatalytic activity of FePc for ORR, shifting the onset potential up to 1.01 V vs. RHE in an alkaline medium, a potential close to the reversible potential of the O2 /H2 O couple. Therefore, this work has exciting implications for developing highly efficient and bioinspired catalysts, considering that, in biological organisms, biocatalysts that promote O2 reduction to water comprise L-enantiomers.

2.
Materials (Basel) ; 16(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36984207

RESUMO

Climate change has evidenced the need to reduce carbon dioxide emissions into the atmosphere, and so for transport applications, lighter weight alloys have been studied, such as magnesium alloys. However, they are susceptible to corrosion; therefore, surface treatments have been extensively studied. In this work, the influence of argon plasma pretreatment on the surface properties of an AZ31 magnesium alloy focus on the enhancement of the reactivity of the surface, which was examined by surface analysis techniques, electrochemical techniques, and gravimetric measurements. The samples were polished and exposed to argon plasma for two minutes in order to activate the surface. Contact angle measurements revealed higher surface energy after applying the pretreatment, and atomic force microscopy showed a roughness increase, while X-Ray photoelectron spectroscopy showed a chemical change on the surface, where after pretreatment the oxygen species increased. Electrochemical measurements showed that surface pretreatment does not affect the corrosion mechanism of the alloy, while electrochemical impedance spectroscopy reveals an increase in the original thickness of the surface film. This increase is likely associated with the high reactivity that the plasma pretreatment confers to the surface of the AZ31 alloy, affecting the extent of oxide formation and, consequently, the increase in its protection capacity. The weight loss measurements support the effect of the plasma pretreatment on the oxide thickness since the corrosion rate of the pretreated AZ31 specimens was lower than that of those that did not receive the surface pretreatment.

4.
Front Bioeng Biotechnol ; 9: 749057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938720

RESUMO

The influence of pH on the electrochemical behavior of hydrogen peroxide in the presence of Pseudomonas aeruginosa was investigated using electrochemical techniques. Cyclic and square wave voltammetry were used to monitor the enzymatic activity. A modified cobalt phthalocyanine (CoPc) carbon electrode (OPG), a known catalyst for reducing O2 to H2O2, was used to detect species resulting from the enzyme activity. The electrolyte was a sterilized aqueous medium containing Mueller-Hinton (MH) broth. The open-circuit potential (OCP) of the Pseudomonas aeruginosa culture in MH decreased rapidly with time, reaching a stable state after 4 h. Peculiarities in the E / I response were observed in voltammograms conducted in less than 4 h of exposure to the culture medium. Such particular E/I responses are due to the catalase's enzymatic action related to the conversion of hydrogen peroxide to oxygen, confirming the authors' previous findings related to the behavior of other catalase-positive microorganisms. The enzymatic activity exhibits maximum activity at pH 7.5, assessed by the potential at which oxygen is reduced to hydrogen peroxide. At higher or lower pHs, the oxygen reduction reaction (ORR) occurs at higher overpotentials, i.e., at more negative potentials. In addition, and to assess the influence of bacterial adhesion on the electrochemical behavior, measurements of the bacterial-substrate metal interaction were performed at different pH using atomic force microscopy.

5.
Front Chem ; 8: 22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32064248

RESUMO

From the early 60s, Co complexes, especially Co phthalocyanines (CoPc) have been extensively studied as electrocatalysts for the oxygen reduction reaction (ORR). Generally, they promote the 2-electron reduction of O2 to give peroxide whereas the 4-electron reduction is preferred for fuel cell applications. Still, Co complexes are of interest because depending on the chemical environment of the Co metal centers either promote the 2-electron transfer process or the 4-electron transfer. In this study, we synthetized 3 different Co catalysts where Co is coordinated to 5 N atoms using CoN4 phthalocyanines with a pyridine axial linker anchored to carbon nanotubes. We tested complexes with electro-withdrawing or electro-donating residues on the N4 phthalocyanine ligand. The catalysts were characterized by EPR and XPS spectroscopy. Ab initio calculations, Koutecky-Levich extrapolation and Tafel plots confirm that the pyridine back ligand increases the Co-O2 binding energy, and therefore promotes the 4-electron reduction of O2. But the presence of electron withdrawing residues, in the plane of the tetra N atoms coordinating the Co, does not further increase the activity of the compounds because of pull-push electronic effects.

6.
Molecules ; 23(11)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355974

RESUMO

An experimental protocol was studied to improve the adhesion of a polymeric poly(methyl methacrylate) coating that was modified with silver nanoparticles to an aluminum alloy, AA2024. The nanoparticles were incorporated into the polymeric matrix to add the property of inhibiting biofilm formation to the anticorrosive characteristics of the film, thus also making the coating antibiocorrosive. The protocol consists of functionalizing the surface through a pseudotransesterification treatment using a methyl methacrylate monomer that bonds covalently to the surface and leaves a terminal double bond that promotes and directs the polymerization reaction that takes place in the process that follows immediately after. This results in more compact and thicker poly(methyl methacrylate) (PMMA) coatings than those obtained without pseudotransesterification. The poly(methyl methacrylate) matrix modified with nanoparticles was obtained by incorporating both the nanoparticles and the methyl methacrylate in the reactor. The in situ polymerization involved combining the pretreated AA2024 specimens combined with the methyl methacrylate monomer and AgNps. The antibiofilm capacity of the coating was evaluated against P. aeruginosa, with an excellent response. Not only did the presence of bacteria decrease, but the formation of the exopolymer subunits was 99.99% lower than on the uncoated aluminum alloy or the alloy coated with unmodified poly(methyl methacrylate). As well and significantly, the potentiodynamic polarization measurements indicate that the PMMA-Ag coating has a good anticorrosive property in a 0.1-M NaCl medium.


Assuntos
Ligas , Alumínio , Anti-Infecciosos , Materiais Revestidos Biocompatíveis , Nanopartículas Metálicas , Polimetil Metacrilato , Prata , Ligas/química , Alumínio/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Espectroscopia Fotoeletrônica , Polimetil Metacrilato/química , Pseudomonas aeruginosa/efeitos dos fármacos , Propriedades de Superfície
7.
Phys Chem Chem Phys ; 19(31): 20441-20450, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28745759

RESUMO

We have compared the electrocatalytic activity of several substituted and unsubstituted Co and Fe N4-macrocyclic complexes (MN4) for the electro-reduction of oxygen with the complexes directly adsorbed on the edge plane of pyrolytic graphite or adsorbed on carbon nanotubes (CNTs). In the presence of CNTs, one order of magnitude higher surface concentrations of MN4 catalysts per geometric area unit could be adsorbed leading to a lower overpotential for the oxygen electro-reduction and activities in the same order of magnitude as the commercially available Pt/C catalysts in basic pH. From Koutecky-Levich regression analysis, the total number of electrons transferred was approximately 2 for all the Co complexes and 4 for all the Fe ones, both in the presence and in the absence of the carbon nanotubes. Furthermore, the Tafel slopes did not vary due to the presence of the CNTs and presented values in the range of -0.06 V decade-1 for the CoN4 compounds and in the range of -0.04 V decade-1 for FeN4. When plotting the log of kinetic current densities (i.e. log jk) at a constant potential for each complex divided by the surface concentration Γ, and the number of electrons transferred n for the ORR for each catalyst, versus the difference between the redox potential of the metal active site of the Co(ii)/(i) or Fe(iii)/(ii) catalyst and the reversible potential of the reaction they promote, the catalytic activity increases when the formal potential of the complex becomes more positive and the data obtained with complexes adsorbed on graphite are in agreement with the data obtained when using CNTs indicating that the increase in jk when CNTs are present is only due to an increase in the number of active sites per geometric area of the electrode.

8.
Angew Chem Int Ed Engl ; 55(47): 14510-14521, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27666439

RESUMO

Similarities are established between well-known reactivity descriptors of metal electrodes for their activity in the oxygen reduction reaction (ORR) and the reactivity of molecular catalysts, in particular macrocyclic MN4 metal complexes confined to electrode surfaces. We show that there is a correlation between the MIII /MII redox potential of MN4 chelates and the M-O2 binding energies. Specifically, the binding energy of O2 (and other O species) follows the MIII -OH/MII redox transition for MnN4 and FeN4 chelates. The ORR volcano plot for MN4 catalysts is similar to that for metal catalysts: catalysts on the weak binding side (mostly CoN4 chelates) yield mainly H2 O2 as the product, with an ORR onset potential independent of the pH value on the NHE scale (and therefore pH-dependent on the RHE scale); catalysts on the stronger binding side yield H2 O as the product with the expected pH-dependence on the NHE scale. The suggested descriptors also apply to heat-treated pyrolyzed MN4 catalysts.

9.
Chemistry ; 22(36): 12808-18, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27458818

RESUMO

We studied the electronic and conductance properties of two thiophene-curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), in which the only structural difference is the position of the sulfur atoms in the thiophene terminal groups. We used electrochemical techniques as well as UV/Vis absorption studies to obtain the values of the HOMO-LUMO band gap energies, showing that molecule 1 has lower values than 2. Theoretical calculations show the same trend. Self-assembled monolayers (SAMs) of these molecules were studied by using electrochemistry, showing that the interaction with gold reduces drastically the HOMO-LUMO gap in both molecules to almost the same value. Single-molecule conductance measurements show that molecule 2 has two different conductance values, whereas molecule 1 exhibits only one. Based on theoretical calculations, we conclude that the lowest conductance value, similar in both molecules, corresponds to a van der Waals interaction between the thiophene ring and the electrodes. The one order of magnitude higher conductance value for molecule 2 corresponds to a coordinate (dative covalent) interaction between the sulfur atoms and the gold electrodes.


Assuntos
Curcumina/química , Eletroquímica/métodos , Ouro/química , Tiofenos/química , Estrutura Molecular , Nanotecnologia
10.
J Nanosci Nanotechnol ; 9(4): 2201-14, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19437959

RESUMO

The manuscript discusses different ways of forming hybrid materials between single (SWCNT) or multi (MWCNT) walled carbon nanotubes and biomimetic compounds such as metalloporphyrins, metallophthalocyanines and other MN4 complexes. The hybrid materials are employed for electrocatalysis of reactions such as oxygen and hydrogen peroxide reduction, nitric oxide oxidation, oxidation of thiols and other pollutants. Methods of characterizing the hybrid materials such as cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) are discussed.


Assuntos
Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Indóis/síntese química , Metaloporfirinas/síntese química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Catálise , Indóis/química , Isoindóis , Metaloporfirinas/química , Oxirredução
11.
Phys Chem Chem Phys ; 9(26): 3383-96, 2007 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-17664962

RESUMO

In this work we discuss different approaches for achieving electrodes modified with N(4) macrocyclic complexes for the catalysis of the electrochemical oxidation of thiols. These approaches involve adsorption, electropolymerization and molecular anchoring using self assembled monolayers. We also discuss the parameters that determine the reactivity of these complexes. Catalytic activity is associated with the nature of the central metal, redox potentials and Hammett parameters of substituents on the ligand. Correlations between catalytic activity (log i at constant E) and the redox potential of catalysts for complexes of Cr, Mn, Fe, Co, Ni and Cu are linear with an increase of activity for more positive redox potentials. For a great variety complexes bearing the same metal center (Co) correlations between log i and E(o') of the Co(II)/Co(I) couple have the shape of an unsymmetric volcano. This indicates that the potential of the Co(II)/Co(I) couple can be tuned using the appropriate ligand to achieve maximum catalytic activity. Maximum activity probably corresponds to a DeltaG of adsorption of the thiol on the Co center equal to zero, and to a coverage of active sites by the thiol equal to 0.5.


Assuntos
Indóis/química , Metaloporfirinas/química , Compostos de Sulfidrila/química , Catálise , Eletroquímica , Eletrodos , Isoindóis , Substâncias Macromoleculares/química , Estrutura Molecular , Oxirredução , Propriedades de Superfície
12.
Bioelectrochemistry ; 70(1): 147-54, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16723282

RESUMO

Modified electrodes coated by adsorbed cobalt phthalocyanines are known to show substantial electrocatalytic activity for the electro-oxidation of several thiols in alkaline aqueous solution. In this context, we explore in this study the electrocatalytic activity of adsorbed cobalt phthalocyanine (CoPc) on ordinary pyrolytic graphite electrode for the oxidation of reduced L-glutathione GSH and the reduction of its disulfide GSSG at physiological pH. To do so, cyclic and rotating disk voltammetries were performed and the amperometric results show that a stable electrochemical sensing material, with good reproducibility and sensitivity (in accordance with the concentrations of GSH expected in biological media), can be easily achieved. This opens the way for the design of an electrochemical sensor able to detect these two analytes in biologically relevant experimental conditions (in terms of pH).


Assuntos
Dissulfetos/química , Glutationa/química , Grafite/química , Indóis/química , Compostos Organometálicos/química , Catálise , Eletroquímica , Eletrodos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Oxirredução
13.
J Phys Chem A ; 110(42): 11870-5, 2006 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-17048819

RESUMO

The hydrazine oxidation by iron(II) phthalocyanine (Fe(II)Pc) has been studied using an energy profile framework through quantum chemistry theoretical models calculated in the gas phase at the density functional theory B3LYP/LACVP(d) level. We applied two models of charge-transfer mechanisms previously reported (J. Phys. Chem. A 2005, 109, 1196) for the hydrazine oxidation mediated by Co(II)Pc. Model 1 consists of an alternated loss of one electron and one proton, involving anionic and neutral species. Model 2 considers an alternated loss of two electrons and two protons and includes anionic, neutral, and cationic species. Both applied models describe how the charge-transfer process occurs. In contrast with the obtained results for Co(II)Pc, we found that the hydrazine oxidation mediated by Fe(II)Pc is a fully through-bond charge-transfer mechanism. On the other hand, the use of different charge-transfer descriptors (spin density, electronic population, condensed Fukui function) showed a major contribution of the iron atom in comparison with the cobalt atom in the above-mentioned process. These results could explain the higher catalytic activity observed experimentally for Fe(II)Pc in comparison with Co(II)Pc. The applied theoretical models are a good starting point to rationalize the charge-transfer process of hydrazine oxidation mediated by Fe(II)Pc.


Assuntos
Compostos Ferrosos/química , Hidrazinas/química , Indóis/química , Gases , Modelos Moleculares , Oxirredução , Teoria Quântica
14.
J Phys Chem A ; 110(15): 5102-7, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16610831

RESUMO

Several molecular descriptors, based on topological approaches as well as on a more traditional orbital-based decomposition, have been used to asses relations with hydrogen bond strengths in a series of formic acid dimers and its sulfur derivatives. Particular attention has been devoted to the analysis of the core-valence bifurcation topological index and to the bond order index. Their values are seen to be linearly related to bond energies estimated through a bond-energy-bond-order relationship; also, the mean value of the topological index appears to be related to the complexation energy computed by methods based on density functional theory. The dependence of the index upon the donor-acceptor couple in relation to its applicability is discussed.


Assuntos
Formiatos/química , Compostos de Enxofre/química , Simulação por Computador , Dimerização , Ligação de Hidrogênio , Modelos Químicos
15.
Anal Chem ; 77(21): 6942-6, 2005 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16255593

RESUMO

Single-wavelength (HeNe laser, lambda = 633 nm), normal incidence UV-visible reflectance spectroscopy was used to monitor the optical properties of the glassy carbon (GC)|0.2 M NaOH(aq) interface as a function of the applied potential, E. Whereas the electroreflectance coefficient for bare GC was found to be small and potential independent, surface functionalization by an irreversibly adsorbed layer of tetrasulfonated cobalt phthalocyanine (CoTSPc) yielded a clearly defined sigmoidally shaped normalized reflectance change (DeltaR/R) vs E curve over the potential region in which the adsorbate displayed redox peaks. Assuming DeltaR/R is proportional to the extent of redox conversion, as has been reported for macrocycles adsorbed on other types of carbon (e.g., Kim, S.; Xu, X.; Bae, I. T.; Wang, Z.; Scherson, D. A. Anal. Chem. 1990, 62, 2647-2650), differential coverage-potential relations were determined based purely on the optical data collected. A similar optical behavior was found for irreversible adsorbed CoPc and tetraamino CoPc (CoTAPc) adsorbed on GC, for which the voltammetric peaks were ill-defined, too small for coulometric analyses to be reliably performed, or both. No detectable changes in the DeltaR/R vs E profiles of either bare or macrocyclic-functionalized surfaces were observed upon addition of hydrazine to the neat 0.2 M NaOH solution at potentials at which these surfaces display electrocatalytic properties for its oxidation. Possible factors responsible for this behavior are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...