Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 13(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38921808

RESUMO

Several pathotypes of enteric E. coli have been identified. The group represented by Shiga toxin-producing E. coli (STEC) is of particular interest. Raw milk and raw milk products are significant sources of STEC infection in humans; therefore, identifying pathogens at the herd level is crucial for public health. Most national surveillance programs focus solely on raw milk and raw milk cheeses that are ready for retail sale, neglecting the possibility of evaluating the source of contamination directly at the beginning of the dairy chain. To assess the viability of the application of new molecular methodologies to STEC identification in raw milk filters and in calf feces, we analyzed 290 samples from 18 different dairy herds, including 88 bulk tank milk (BTM), 104 raw milk filters (RMF), and 98 calf feces samples. In total 3.4% of BTM, 41.4% of RMF, and 73.4% of calves' feces were positive for stx, supporting our hypothesis that BTM is not a suitable matrix to assess the presence of STEC at herd level, underestimating it. Our conclusion is that the surveillance program needs critical and extensive improvements such as RMF and calves' feces analysis implementation to be more efficient in detecting and preventing STEC infections. The epidemiology of these infections and the characteristics of the pathogen clearly show how a One Health approach will be pivotal in improving our capabilities to control the spread of these infections.

2.
Pathogens ; 12(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38133314

RESUMO

Contagious pathogens are very costly to dairy herds, and they may have zoonotic and reverse-zoonotic potentials and may contribute to the spread of antimicrobial resistance. One of the most important risk factors for spreading these infections is milking, when liner contamination may transfer the pathogens from infected to healthy cows. There is no effective protocol to prevent the transmission of infection without the segregation of infected cows. Recently, the availability of elastomers with patented antimicrobial components in their formulations has allowed the exploration of alternative methods to reduce the risk of infection. Two different types of elastomers (rubber and silicone) and nine different formulations were challenged with three major mastitis pathogens (S. aureus, S. agalactiae, and E. coli). The results that were obtained in this study were interesting and unexpected. Indeed, to our knowledge, this is the first study to show that basic rubber materials have intrinsic antimicrobial activity. Silicone elastomers did not exhibit the same levels of bactericidal activity, although they did exhibit some antibacterial capacity. A significant decrease in bacterial survival curves was observed for all the formulations tested when antimicrobial components were added. The different results observed for the various products are likely due to the different formulations and diverse manufacturing processes. The availability of these new materials that significantly reduce the bacterial load on the liner surface may reduce the risk of spreading intramammary infections during milking. This would be an important step forward in achieving global sustainability of dairy herds, consistent with the objectives of One Health, by reducing the risks of zoonotic diseases and antimicrobial treatments.

3.
Antibiotics (Basel) ; 12(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136688

RESUMO

Staphylococcus aureus are commensal bacteria that are found in food, water, and a variety of settings in addition to being present on the skin and mucosae of both humans and animals. They are regarded as a significant pathogen as well, with a high morbidity that can cause a variety of illnesses. The Centers for Disease Control and Prevention (CDC) has listed them among the most virulent and resistant to antibiotics bacterial pathogens, along with Escherichia coli, Staphylococcus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterococcus faecalis, and Enterococcus faecium. Additionally, S. aureus is a part of the global threat posed by the existence of antimicrobial resistance (AMR). Using 26,430 S. aureus isolates from a global public database (NPDIB; NCBI Pathogen Detection Isolate Browser), epidemiological research was conducted. The results corroborate the evidence of notable variations in isolate distribution and ARG (Antimicrobial Resistance Gene) clusters between isolate sources and geographic origins. Furthermore, a link between the isolates from human and animal populations is suggested by the ARG cluster patterns. This result and the widespread dissemination of the pathogens among animal and human populations highlight how crucial it is to learn more about the epidemiology of these antibiotic-resistance-related infections using a One Health approach.

4.
Antibiotics (Basel) ; 12(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508321

RESUMO

Staphylococcus aureus is considered one of the most widespread bacterial pathogens for both animals and humans, being the causative agent of various diseases like food poisoning, respiratory tract infections, nosocomial bacteremia, and surgical site and cardiovascular infections in humans, as well as clinical and subclinical mastitis, dermatitis, and suppurative infections in animals. Thanks to their genetic flexibility, several virulent and drug-resistant strains have evolved mainly due to horizontal gene transfer and insurgence of point mutations. Infections caused by the colonization of such strains are particularly problematic due to frequently occurring antibiotic resistance, particulary methicillin-resistant S. aureus (MRSA), and are characterized by increased mortality, morbidity, and hospitalization rates compared to those caused by methicillin-sensitive S. aureus (MSSA). S. aureus infections in humans and animals are a prime example of a disease that may be managed by a One Health strategy. In fact, S. aureus is a significant target for control efforts due to its zoonotic potential, the frequency of its illnesses in both humans and animals, and the threat posed by S. aureus antibiotic resistance globally. The results of an epidemiological analysis on a worldwide public database (NCBI Pathogen Detection Isolate Browser; NPDIB) of 35,026 S. aureus isolates were described. We considered the diffusion of antibiotic resistance genes (ARGs), in both human and animal setting, and the results may be considered alarming. The result of this study allowed us to identify the presence of clusters with specific ARG patterns, and that these clusters are associated with different sources of isolation (e.g., human, non-human).

5.
Animals (Basel) ; 13(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048399

RESUMO

Mastitis is a major cause of antimicrobial treatments either during lactation or at drying off. From a One Health perspective, there should be a balance between the risk of IMI that may impair cow health and welfare and the reduction of antimicrobial usage to decrease antimicrobial resistance, as may happen when applying selective dry-cow therapy. This reduction may be achieved by an early and accurate diagnosis followed by prudent and rationale therapeutical protocols. This study aims to assess the accuracy of PLCC (neutrophils + lymphocyte count/mL) in identifying cows at risk of having IMI due to major pathogens (S.aureus, Str.agalactiae, Str.uberis, and Str.dysgalactiae), and to simulate the impact of this early diagnosis on the potential number of treatments using a decision-tree model. The results of this study showed that PLCC had an overall accuracy of 77.6%. The results of the decision-tree model based on data from the 12 participating herds, with an overall prevalence of major pathogens of 1.5%, showed a potential decrease in the number of treatments of about 30% (from 3.4% to 2.5%) when PLCC in early lactation (days 5-16) was used to identify cows at risk for major pathogens compared with using SCC at the first milk test (days 17-43). The study confirmed that it is possible to improve animal health and reduce the risk of antimicrobial use through early IMI detection based on PLCC and applying a rationale and prudent antimicrobial protocol.

6.
Antibiotics (Basel) ; 11(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36140016

RESUMO

Streptococcus agalactiae is a well-known pathogen in humans and food-producing animals. Therefore, this bacterium is a paradigmatic example of a pathogen to be controlled by a One Health approach. Indeed, the zoonotic and reverse-zoonotic potential of the bacteria, the prevalence of Group B Streptococci (GBS) diseases in both human and animal domains, and the threatening global situation on GBS antibiotic resistance make these bacteria an important target for control programs. An epidemiological analysis using a public database containing sequences of S. agalactiae from all over the world was conducted to evaluate the frequency and evolution of antibiotic resistance genes in those isolates. The database we considered (NCBI pathogen detection isolate browser-NPDIB) is maintained on a voluntary basis. Therefore, it does not follow strict epidemiological criteria. However, it may be considered representative of the bacterial population related to human diseases. The results showed that the number of reported sequences increased largely in the last four years, and about 50% are of European origin. The frequency data and the cluster analysis showed that the AMR genes increased in frequency in recent years and suggest the importance of verifying the application of prudent protocols for antimicrobials in areas with an increasing frequency of GBS infections both in human and veterinary medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...