Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 31(6): 061103, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34241317

RESUMO

In this paper, we study phase transitions for weakly interacting multiagent systems. By investigating the linear response of a system composed of a finite number of agents, we are able to probe the emergence in the thermodynamic limit of a singular behavior of the susceptibility. We find clear evidence of the loss of analyticity due to a pole crossing the real axis of frequencies. Such behavior has a degree of universality, as it does not depend on either the applied forcing or on the considered observable. We present results relevant for both equilibrium and nonequilibrium phase transitions by studying the Desai-Zwanzig and Bonilla-Casado-Morillo models.

2.
Proc Math Phys Eng Sci ; 476(2244): 20200688, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33402877

RESUMO

We study the response to perturbations in the thermodynamic limit of a network of coupled identical agents undergoing a stochastic evolution which, in general, describes non-equilibrium conditions. All systems are nudged towards the common centre of mass. We derive Kramers-Kronig relations and sum rules for the linear susceptibilities obtained through mean field Fokker-Planck equations and then propose corrections relevant for the macroscopic case, which incorporates in a self-consistent way the effect of the mutual interaction between the systems. Such an interaction creates a memory effect. We are able to derive conditions determining the occurrence of phase transitions specifically due to system-to-system interactions. Such phase transitions exist in the thermodynamic limit and are associated with the divergence of the linear response but are not accompanied by the divergence in the integrated autocorrelation time for a suitably defined observable. We clarify that such endogenous phase transitions are fundamentally different from other pathologies in the linear response that can be framed in the context of critical transitions. Finally, we show how our results can elucidate the properties of the Desai-Zwanzig model and of the Bonilla-Casado-Morillo model, which feature paradigmatic equilibrium and non-equilibrium phase transitions, respectively.

3.
Chaos ; 29(8): 083123, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472518

RESUMO

A stochastic reaction-diffusion model is studied on a networked support. In each patch of the network, two species are assumed to interact following a non-normal reaction scheme. When the interaction unit is replicated on a directed linear lattice, noise gets amplified via a self-consistent process, which we trace back to the degenerate spectrum of the embedding support. The same phenomenon holds when the system is bound to explore a quasidegenerate network. In this case, the eigenvalues of the Laplacian operator, which governs species diffusion, accumulate over a limited portion of the complex plane. The larger the network, the more pronounced the amplification. Beyond a critical network size, a system deemed deterministically stable, hence resilient, can develop seemingly regular patterns in the concentration amount. Non-normality and quasidegenerate networks may, therefore, amplify the inherent stochasticity and so contribute to altering the perception of resilience, as quantified via conventional deterministic methods.

4.
Phys Rev E ; 96(6-1): 062313, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29347454

RESUMO

We study a simple stochastic model of neuronal excitatory and inhibitory interactions. The model is defined on a directed lattice and internodes couplings are modulated by a nonlinear function that mimics the process of synaptic activation. We prove that such a system behaves as a fully tunable amplifier: the endogenous component of noise, stemming from finite size effects, seeds a coherent (exponential) amplification across the chain generating giant oscillations with tunable frequencies, a process that the brain could exploit to enhance, and eventually encode, different signals. On a wider perspective, the characterized amplification process could provide a reliable pacemaking mechanism for biological systems. The device extracts energy from the finite size bath and operates as an out of equilibrium thermal machine, under stationary conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...