Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 3: 3464, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24322568

RESUMO

We propose a method of resolving a spatially coherent signal, which contains on average just a single photon, against the background of local noise at the same frequency. The method is based on detecting the signal simultaneously in several points more than a wavelength apart through the entangling interaction of the incoming photon with the quantum metamaterial sensor array. The interaction produces the spatially correlated quantum state of the sensor array, characterised by a collective observable (e.g., total magnetic moment), which is read out using a quantum nondemolition measurement. We show that the effects of local noise (e.g., fluctuations affecting the elements of the array) are suppressed relative to the signal from the spatially coherent field of the incoming photon as , where N is the number of array elements. The realisation of this approach in the microwave range would be especially useful and is within the reach of current experimental techniques.

2.
Phys Rev Lett ; 104(19): 193601, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866963

RESUMO

We present experimental observation of electromagnetically induced transparency (EIT) on a single macroscopic artificial "atom" (superconducting quantum system) coupled to open 1D space of a transmission line. Unlike in an optical media with many atoms, the single-atom EIT in 1D space is revealed in suppression of reflection of electromagnetic waves, rather than absorption. The observed almost 100% modulation of the reflection and transmission of propagating microwaves demonstrates full controllability of individual artificial atoms and a possibility to manipulate the atomic states. The system can be used as a switchable mirror of microwaves and opens a good perspective for its applications in photonic quantum information processing and other fields.

3.
Phys Rev Lett ; 104(18): 183603, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482174

RESUMO

We report amplification of electromagnetic waves by a single artificial atom in open 1D space. Our three-level artificial atom--a superconducting quantum circuit--coupled to a transmission line presents an analog of a natural atom in open space. The system is the most fundamental quantum amplifier whose gain is limited by a spontaneous emission mechanism. The noise performance is determined by the quantum noise revealed in the spectrum of spontaneous emission, also characterized in our experiments.

4.
Science ; 327(5967): 840-3, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20150495

RESUMO

An atom in open space can be detected by means of resonant absorption and reemission of electromagnetic waves, known as resonance fluorescence, which is a fundamental phenomenon of quantum optics. We report on the observation of scattering of propagating waves by a single artificial atom. The behavior of the artificial atom, a superconducting macroscopic two-level system, is in a quantitative agreement with the predictions of quantum optics for a pointlike scatterer interacting with the electromagnetic field in one-dimensional open space. The strong atom-field interaction as revealed in a high degree of extinction of propagating waves will allow applications of controllable artificial atoms in quantum optics and photonics.

5.
Phys Rev Lett ; 101(25): 253602, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19113707

RESUMO

Superconducting oscillators have been successfully used for quantum control and readout devices in conjunction with superconducting qubits. Also, squeezed states can improve the accuracy of measurements to subquantum, or at least subthermal, levels. Here, we show theoretically how to produce squeezed states of microwave radiation in a superconducting oscillator with tunable parameters. Its resonance frequency can be changed by controlling an rf SQUID inductively coupled to the oscillator. By repeatedly shifting the resonance frequency between any two values, it is possible to produce squeezed and subthermal states of the electromagnetic field in the (0.1-10) GHz range, even when the relative frequency change is small. We propose experimental protocols for the verification of squeezed state generation, and for their use to improve the readout fidelity when such oscillators serve as quantum transducers.

6.
Phys Rev Lett ; 98(12): 120503, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17501105

RESUMO

We map adiabatic quantum evolution on the classical Hamiltonian dynamics of a 1D gas (Pechukas gas) and simulate the latter numerically. This approach turns out to be both insightful and numerically efficient, as seen from our example of a CNOT gate simulation. For a general class of Hamiltonians we show that the escape probability from the initial state scales no faster than |lambda|gamma, where |lambda| is the adiabaticity parameter. The scaling exponent for the escape probability is gamma=1/2 for all levels, except the edge (bottom and top) ones, where gamma approximately < 1/3. In principle, our method can solve arbitrarily large adiabatic quantum Hamiltonians.

7.
Phys Rev Lett ; 98(5): 057004, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17358887

RESUMO

We have realized controllable coupling between two three-junction flux qubits by inserting an additional coupler loop between them, containing three Josephson junctions. Two of these are shared with the qubit loops, providing strong qubit-coupler interaction. The third junction gives the coupler a nontrivial current-flux relation; its derivative (i.e., the susceptibility) determines the coupling strength J, which thus is tunable in situ via the coupler's flux bias. In the qubit regime, J was varied from approximately 45 (antiferromagnetic) to approximately -55 mK (ferromagnetic); in particular, J vanishes for an intermediate coupler bias. Measurements on a second sample illuminate the relation between two-qubit tunable coupling and three-qubit behavior.

8.
Phys Rev Lett ; 97(7): 077001, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-17026265

RESUMO

The two-level systems (TLSs) naturally occurring in Josephson junctions constitute a major obstacle for the operation of superconducting phase qubits. Since these TLSs can possess remarkably long decoherence times, we show that such TLSs can themselves be used as qubits, allowing for a well controlled initialization, universal sets of quantum gates, and readout. Thus, a single current-biased Josephson junction can be considered as a multiqubit register. It can be coupled to other junctions to allow the application of quantum gates to an arbitrary pair of qubits in the system. Our results indicate an alternative way to realize superconducting quantum information processing.

9.
Phys Rev Lett ; 96(4): 047006, 2006 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16486877

RESUMO

We present the first experimental results on a device with more than two superconducting qubits. The circuit consists of four three-junction flux qubits, with simultaneous ferro- and antiferromagnetic coupling implemented using shared Josephson junctions. Its response, which is dominated by the ground state, is characterized using low-frequency impedance measurement with a superconducting tank circuit coupled to the qubits. The results are found to be in excellent agreement with the quantum-mechanical predictions.

10.
Phys Rev Lett ; 93(3): 037003, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15323858

RESUMO

We have studied the low-frequency magnetic susceptibility of two inductively coupled flux qubits using the impedance measurement technique (IMT), through their influence on the resonant properties of a weakly coupled high-quality tank circuit. In a single qubit, an IMT dip in the tank's current-voltage phase angle at the level anticrossing yields the amplitude of coherent flux tunneling. For two qubits, the difference (IMT deficit) between the sum of single-qubit dips and the dip amplitude when both qubits are at degeneracy shows that the system is in a mixture of entangled states (a necessary condition for entanglement). The dependence on temperature and relative bias between the qubits allows one to determine all the parameters of the effective Hamiltonian and equilibrium density matrix, and confirms the formation of entangled eigenstates.

11.
Phys Rev Lett ; 91(9): 097906, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-14525214

RESUMO

Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a continuously observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to the Rabi frequency. In addition to simplicity, this method of Rabi spectroscopy enabled a long coherence time of about 2.5 micros, corresponding to an effective qubit quality factor approximately 7000.

12.
Phys Rev Lett ; 90(11): 117002, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12688956

RESUMO

The predominant d-wave pairing symmetry in high-temperature superconductors allows for a variety of current-phase relations in Josephson junctions, which is to a certain degree fabrication controlled. In this Letter, we report on direct experimental observations of the effects of a nonsinusoidal current-phase dependence in YBCO dc SQUIDs, which agree with the theoretical description of the system.

13.
Phys Rev Lett ; 86(23): 5369-72, 2001 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-11384500

RESUMO

We have measured the current-phase relationship I(varphi) of symmetric 45 degrees YBa2Cu3O7-x grain boundary Josephson junctions. Substantial deviations of the Josephson current from conventional tunnel-junction behavior have been observed: (i) The critical current exhibits, as a function of temperature T, a local minimum at a temperature T*. (ii) At T approximately T*, the first harmonic of I(phi) changes sign. (iii) For T

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...