Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928461

RESUMO

"Core/shell" composites are based on a ferrite core coated by two layers with different properties, one of them is an isolator, SiO2, and the other is a semiconductor, TiO2. These composites are attracting interest because of their structure, photocatalytic activity, and magnetic properties. Nanocomposites of the "core/shell" МFe2O4/SiO2/TiO2 (М = Zn(II), Co(II)) type are synthesized with a core of MFe2O4 produced by two different methods, namely the sol-gel method (SG) using propylene oxide as a gelling agent and the hydrothermal method (HT). SiO2 and TiO2 layer coating is performed by means of tetraethylorthosilicate, TEOS, Ti(IV) tetrabutoxide, and Ti(OBu)4, respectively. A combination of different experimental techniques is required to prove the structure and phase composition, such as XRD, UV-Vis, TEM with EDS, photoluminescence, and XPS. By Rietveld analysis of the XRD data unit cell parameters, the crystallite size and weight fraction of the polymorphs anatase and rutile of the shell TiO2 and of the ferrite core are determined. The magnetic properties of the samples, and their activity for the photodegradation of the synthetic industrial dyes Malachite Green and Rhodamine B are measured in model water solutions under UV light irradiation and simulated solar irradiation. The influence of the water matrix on the photocatalytic activity is determined using artificial seawater in addition to ultrapure water. The rate constants of the photocatalytic process are obtained along with the reaction mechanism, established using radical scavengers where the role of the radicals is elucidated.


Assuntos
Nanocompostos , Rodaminas , Corantes de Rosanilina , Titânio , Poluentes Químicos da Água , Nanocompostos/química , Corantes de Rosanilina/química , Catálise , Poluentes Químicos da Água/química , Rodaminas/química , Titânio/química , Fotólise , Dióxido de Silício/química , Compostos Férricos/química , Processos Fotoquímicos , Difração de Raios X
2.
Molecules ; 28(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241855

RESUMO

The luminescent metal-organic complexes of rare earth metals are advanced materials with wide application potential in chemistry, biology, and medicine. The luminescence of these materials is due to a rare photophysical phenomenon called antenna effect, in which the excited ligand transmits its energy to the emitting levels of the metal. However, despite the attractive photophysical properties and the intriguing from a fundamental point of view antenna effect, the theoretical molecular design of new luminescent metal-organic complexes of rare earth metals is relatively limited. Our computational study aims to contribute in this direction, and we model the excited state properties of four new phenanthroline-based complexes of Eu(III) using the TD-DFT/TDA approach. The general formula of the complexes is EuL2A3, where L is a phenanthroline with -2-CH3O-C6H4, -2-HO-C6H4, -C6H5 or -O-C6H5 substituent at position 2 and A is Cl- or NO3-. The antenna effect in all newly proposed complexes is estimated as viable and is expected to possess luminescent properties. The relationship between the electronic properties of the isolated ligands and the luminescent properties of the complexes is explored in detail. Qualitative and quantitative models are derived to interpret the ligand-to-complex relation, and the results are benchmarked with respect to available experimental data. Based on the derived model and common molecular design criteria for efficient antenna ligands, we choose phenanthroline with -O-C6H5 substituent to perform complexation with Eu(III) in the presence of NO3¯. Experimental results for the newly synthesized Eu(III) complex are reported with a luminescent quantum yield of about 24% in acetonitrile. The study demonstrates the potential of low-cost computational models for discovering metal-organic luminescent materials.

3.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885868

RESUMO

New antenna ligand, 2-(phenylethynyl)-1,10-phenanthroline (PEP), and its luminescent Eu (III) complexes, Eu(PEP)2Cl3 and Eu(PEP)2(NO3)3, are synthesized and characterized. The synthetic procedure applied is based on reacting of europium salts with ligand in hot acetonitrile solutions in molar ratio 1 to 2. The structure of the complexes is refined by X-ray diffraction based on the single crystals obtained. The compounds [Eu(PEP)2Cl3]·2CH3CN and [Eu(PEP)2(NO3)3]∙2CH3CN crystalize in monoclinic space group P21/n and P21/c, respectively, with two acetonitrile solvent molecules. Intra- and inter-ligand π-π stacking interactions are present in solid stat and are realized between the phenanthroline moieties, as well as between the substituents and the phenanthroline units. The optical properties of the complexes are investigated in solid state, acetonitrile and dichloromethane solution. Both compounds exhibit bright red luminescence caused by the organic ligand acting as antenna for sensitization of Eu (III) emission. The newly designed complexes differ in counter ions in the inner coordination sphere, which allows exploring their influence on the stability, molecular and supramolecular structure, fluorescent properties and symmetry of the Eu (III) ion. In addition, molecular simulations are performed in order to explain the observed experimental behavior of the complexes. The discovered structure-properties relationships give insight on the role of the counter ions in the molecular design of new Eu (III) based luminescent materials.

4.
Acta Chim Slov ; 64(2): 299-311, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28621403

RESUMO

A combination of thermal and mechanical (high energy ball milling) treatment was applied in an attempt to obtain polycrystalline mixed metal binary and ternary oxides of the type CoxZn1-xFe2O4 (x = 0; 0.25; 0.5; 0.75; 1). The synthetic procedure used successfully produced single-phased, homogeneous ZnFe2O4, CoFe2O4, and Co0.75Zn0.25Fe2O4, as well as mixed oxides, whose composition depended both on the duration of the high energy ball milling and the ratio Zn(II)/Co(II). The formation of spinel-like structures was proved by XRD, Mössbauer spectroscopy and Raman spectroscopy. For the characterization of the samples low-temperature N2 adsorption, UV/Vis spectroscopy and transmission electron microscopy were applied. The energy band gap of the samples was calculated, suggesting they are promising photocatalysts. The decomposition of the Malachite Green in model water solutions under UV-light irradiation was successfully achieved in the presence of the samples as photocatalysts. The highest rate constant was obtained for the sample synthesized at longer milling time in combination with higher Zn(II)/Co(II) ratio. The photocatalytic activity of the ternary mixed oxides was compared with the pure hematite, α-Fe2O3, and the binary ZnFe2O4 and CoFe2O4 ferrites with spinel structure that were treated in the same way. A synergetic effect of α-Fe2O3 and the spinel-like structure on the photocatalytic properties of ternary mixed metal oxides was detected.

5.
Dalton Trans ; 45(33): 13214-21, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27488015

RESUMO

Metallosupramolecular cages and capsules have gained increasing popularity as both molecular containers and anticancer agents. For successful combination of these properties a thorough analysis of the effect of guest encapsulation on the host's cytotoxic properties is highly required. Here we report on the cytotoxicity modulation of Pt(ii) and Pd(ii)-linked M2L4 coordination capsules upon encapsulation of guest molecules such as pyrene and caffeine. The anticancer activity of the capsules against various human cancer cells (HT-29, T-24, HL-60 and its resistant counterparts HL-60/Dox and HL-60/CDDP) significantly altered upon the guest encapsulation. The encapsulation of pyrene molecules causes a decrease in the cytotoxicity of the Pt(ii) capsule, which is stronger than that of the Pd(ii) capsule. The cytotoxicities of the caffeine containing capsules are lower than that of the empty capsules (except for HL-60), but still superior to cisplatin under the same conditions. The observed trends in the anticancer activity of the capsules and their host-guest complexes correlate with their different stabilities toward glutathione, estimated by NMR-based kinetic experiments. Mechanistic insights into the observed cytotoxicities are obtained by fluorescence microscopy imaging of tumor cells treated with the capsules and their pyrene complexes. The data suggest the glutathione-triggered disassembly of the capsular structures as a potential activation pathway for their cytotoxicities.


Assuntos
Antineoplásicos , Cafeína , Complexos de Coordenação , Paládio , Platina , Pirenos , Antineoplásicos/química , Antineoplásicos/farmacologia , Cafeína/química , Cafeína/farmacologia , Cápsulas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Glutationa/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Paládio/química , Paládio/farmacologia , Platina/química , Platina/farmacologia , Pirenos/química , Pirenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...