Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16482, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777517

RESUMO

This study evaluated the interaction effects of irrigation level (well-watered and water stress conditions) and inoculation by different mycorrhizal species (non-inoculated, Funneliformis mosseae, Rhizophagus irregularis, Claroideoglomus claroideum, and Glomus fasciculatum) on mycorrhizal colonization, antioxidant activity, seed yield and oil quality of two sesame cultivars (Yekta and Naz). Water deficit decreased mycorrhizal colonization, seed yield and oil concentration but increased antioxidant activity and seed total phenol and flavonoid concentrations. However, mycorrhizal inoculation increased antioxidant activity, seed yield, oil concentration and total phenolic and flavonoids. The lowest reduction by water stress and the highest increase by inoculation in seed yield were observed in Naz plants inoculated by Cl. claroideum. Principal component analysis showed the highest differentiation effect of water stress compared to mycorrhizal inoculation on both cultivars, indicating the relative sensitivity of the two cultivars to water deficit. However, the application of different species of mycorrhizal fungi versus the non-inoculation conditions was somewhat discriminative. In terms of fatty acids, in most cases, water stress increased oleic, palmitic and stearic acids and decreased linoleic and linolenic acids but inoculation increased oleic and linoleic acids and decreased linolenic, palmitic and stearic acids. Regarding phenolic and flavonoids components, the contents of chlorogenic and caffeic acids were increased by water stress but no consistent trend was noted in response to water stress for the other compounds. Mycorrhizal inoculation generally decreased chlorogenic acid but increased gallic, caffeic, p-coumaric, and ferulic acids. In conclusion, the results of the present study may help to increase the level of valuable compounds in sesame for further pharmaceutical purposes under water stress conditions and mycorrhizal symbiosis.


Assuntos
Micorrizas , Sesamum , Micorrizas/fisiologia , Antioxidantes/farmacologia , Raízes de Plantas/microbiologia , Ácidos Graxos/farmacologia , Desidratação , Fenóis/farmacologia , Sementes , Flavonoides/farmacologia , Ácidos Esteáricos/farmacologia
2.
Multimed Tools Appl ; : 1-18, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37362725

RESUMO

Text mining methods usually use statistical information to solve text and language-independent procedures. Text mining methods such as polarity detection based on stochastic patterns and rules need many samples to train. On the other hand, deterministic and non-probabilistic methods are easy to solve and faster than other methods but are not efficient in NLP data. In this article, a fast and efficient deterministic method for solving the problems is proposed. In the proposed method firstly we transform text and labels into a set of equations. In the second step, a mathematical solution of ill-posed equations known as Tikhonov regularization was used as a deterministic and non-probabilistic way including additional assumptions, such as smoothness of solution to assign a weight that can reflect the semantic information of each sentimental word. We confirmed the efficiency of the proposed method in the SemEval-2013 competition, ESWC Database and Taboada database as three different cases. We observed improvement of our method over negative polarity due to our proposed mathematical step. Moreover, we demonstrated the effectiveness of our proposed method over the most common and traditional machine learning, stochastic and fuzzy methods.

3.
Front Plant Sci ; 14: 1296286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269142

RESUMO

Salinity, a significant abiotic stressor, adversely affects global plant growth. To address this, monitoring genetic diversity within a plant species germplasm for salt tolerance traits is vital. This study investigates the responses of ten sorghum genotypes to varying salt stress levels (control, 60 mM NaCl, and 120 mM NaCl), aiming to assess genetic diversity. Using a randomized complete block design with three replications and a split-plot arrangement, salt treatments were assigned to main plots, and genotypes were placed in sub-plots. Physiological attributes, including photosynthetic rate, stomatal conductance, CO2 concentration, leaf area index, chlorophyll concentrations, and antioxidant enzyme activity, were measured during the 50% flowering stage. Fresh forage yield was evaluated at the early dough stage, while dry forage yield and sodium/potassium concentrations were determined post-drying. Salinity induced 10-23% and 21-47% reductions in forage fresh yield at 60 mM and 120 mM NaCl, respectively, across sorghum genotypes. Forage dry yield also declined by 11-33% at 60 mM NaCl and 30-58% at 120 mM NaCl. Increased oxidative stress markers, proline, soluble carbohydrates, and antioxidant enzyme activity accompanied salinity. Genotypes exhibited diverse responses, with Payam showing significant chlorophyll and yield reductions at 60 mM NaCl and notable stress indicators at 120 mM NaCl. Pegah and GS4 demonstrated robust osmoregulation. In stress tolerance indices, Sepideh excelled at 60 mM NaCl, while GS4 outperformed at 120 mM NaCl. Pegah demonstrated high tolerance at 120 mM NaCl. Our findings highlight the importance of combating oxidative stress, managing water-related stress, and maintaining ionic homeostasis for sorghum's salt stress resilience. Key indicators like K/Na ratio, MDA, MSI, SOD, and proline effectively differentiate between tolerant and sensitive genotypes, offering valuable insights for sorghum breeding. Salt-tolerant sorghum genotypes exhibit stable photosynthesis, improved stomatal function, and membrane integrity through efficient osmotic regulation and robust antioxidant enzyme activity. This capability enables them to sustain performance, minimizing final product loss. The results suggest cultivating salt-tolerant sorghum in saline areas for increased sustainable production, with Pegah and GS4 emerging as promising candidates for further testing in salt-affected environments to obtain reliable yield data.

4.
Plants (Basel) ; 11(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161349

RESUMO

It has been reported that around the world, approximately 19.5% of all irrigated land and 2.1% of dry land is affected by salt stress, and these percentages continue to increase. Sorghum is the fifth most important cereal in the world and therefore research on its salt tolerance is of global importance. In our research, we focused on foliar application of salicylic acid (SA) on salt-stressed sorghum. We performed a pot experiment with two salt levels (0 and 100 mM sodium chloride NaCl) and five SA concentrations (0, 50, 100, 150 and 200 mg/L). Our results suggest that in saline conditions foliar application of SA induced an adaptive response to salinity by inducing proline accumulation as well as antioxidant enzymes activities and enhanced the protection of the photosynthetic machinery, maintained photosynthesis activities, and improved the growth of sorghum plants. These alleviation effects were depended on applied SA concentration. Under saline condition 150 mg/L, SA was the most effective for relieving the adverse effect of salt stress. Under non-saline conditions 100 mg/L SA was the best for improving sorghum growth and dry matter production. Our results demonstrated that foliar SA application is effective in improving sorghum growth under salinity.

5.
Cancer Cell Int ; 20: 426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32905102

RESUMO

BACKGROUND: The methylation of the CpG islands of the LINE-1 promoter is a tight control mechanism on the function of mobile elements. However, simultaneous quantification of promoter methylation and transcription of LINE-1 has not been performed in progressive stages of colorectal cancer. In addition, the insertion of mobile elements in the genome of advanced adenoma stage, a precancerous stage before colorectal carcinoma has not been emphasized. In this study, we quantify promoter methylation and transcripts of LINE-1 in three stages of colorectal non-advanced adenoma, advanced adenoma, and adenocarcinoma. In addition, we analyze the insertion of LINE-1, Alu, and SVA elements in the genome of patient tumors with colorectal advanced adenomas. METHODS: LINE-1 hypomethylation status was evaluated by absolute quantitative analysis of methylated alleles (AQAMA) assay. To quantify the level of transcripts for LINE-1, quantitative RT-PCR was performed. To find mobile element insertions, the advanced adenoma tissue samples were subjected to whole genome sequencing and MELT analysis. RESULTS: We found that the LINE-1 promoter methylation in advanced adenoma and adenocarcinoma was significantly lower than that in non-advanced adenomas. Accordingly, the copy number of LINE-1 transcripts in advanced adenoma was significantly higher than that in non-advanced adenomas, and in adenocarcinomas was significantly higher than that in the advanced adenomas. Whole-genome sequencing analysis of colorectal advanced adenomas revealed that at this stage polymorphic insertions of LINE-1, Alu, and SVA comprise approximately 16%, 51%, and 74% of total insertions, respectively. CONCLUSIONS: Our correlative analysis showing a decreased methylation of LINE-1 promoter accompanied by the higher level of LINE-1 transcription, and polymorphic genomic insertions in advanced adenoma, suggests that the early and advanced polyp stages may host very important pathogenic processes concluding to cancer.

6.
Cancer Cell Int ; 19: 278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708689

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are involved in different pathogenesis pathways including cancer pathogenesis. The adenoma-carcinoma pathway in colorectal cancer may involve the aberrant and variable gene expression of regulatory RNAs. This study was conducted to analyse the expression and prognosis prediction ability of two natural antisense transcripts, protein kinase C theta antisense RNA 1 (PRKCQ-AS1), and special AT-rich sequence binding protein 1 antisense RNA 1 (SATB1-AS1) in colorectal low-grade adenoma, advanced adenoma, and adenocarcinomas. METHODS: In this study, from two RNA-seq analyses of CCAT1-ko cells and colorectal carcinoma biopsies having diminished and increased levels of CCAT1 transcription, respectively, we nominated two antisense lncRNAs of PRKCQ-AS1 and SATB1-AS1. Samples from colorectal low-grade adenomas, advanced adenomas, adenocarcinomas, and adjacent tissue were subjected to RT-qPCR to determine the expression of PRKCQ-AS1, SATB1-AS1 along with colon cancer-associated transcript 1 (CCAT1) and cMYC. In addition, we used different bioinformatics analyses and webservers (including GEPIA 2, TCGA, and CancerMine) to elucidate the prognosis prediction value, the expression correlation of sense-antisense pair of genes, and the expression profile of these antisense transcripts at the presence or absence of mutations in the driver genes, or the corresponding sense genes. RESULTS: PRKCQ-AS1 showed a wide range of expression levels in colorectal adenoma, advanced adenoma, and adenocarcinoma. Upregulation of PRKCQ-AS1 was related to a significant decrease in survival of colorectal cancer (CRC) patients. The expression levels of PRKCQ-AS1 and PRKCQ were strong and significantly concordant in normal and cancerous colorectal tissues. While SATB1-AS1 showed a wide range of expression in colorectal adenoma, advanced adenoma, and adenocarcinoma as well, its expression was not related to a decrease in survival of CRC patients. The expression levels of SATB1-AS1 and SATB1 (the sense gene) were not strong in normal colorectal tissues. In addition, where SATB1 gene was mutated, the expression of SATB1-AS1 was significantly downregulated. CONCLUSIONS: We found the expression of PRKCQ-AS1 and SATB1-AS1 at a given stage of CRC very variable, and not all biopsy samples showed the increased expression of these antisense transcripts. PRKCQ-AS1 in contrast to SATB1-AS1 showed a significant prognostic value. Since a significantly concordant expression was observed for SATB1-AS1 and SATB1 in only cancerous, and for PRKCQ-AS1 and PRKCQ in both normal and cancerous colorectal tissues, it can be concluded that common mechanisms may regulate the expression of these sense and antisense genes.

7.
Physiol Mol Biol Plants ; 25(5): 1273-1282, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31564788

RESUMO

The aim of this study was to investigate the effect of foliar application of Mg on the leaf-to-root translocation of sugar and ATPase activity in the roots of sugar beet (Beta vulgaris L. Jolgeh). Furthermore, the effect of Mg on H+ secretion from the roots into the surrounding solution and solubility of Fe(OH)3 (s) was investigated. Two Mg fertilizer sources i.e., MgSO4 and Mg-lysine complex (Mg-Lys) were used. A group of plants received only lysine (Lys) and a control treatment free of Mg and Lys was used. Foliar Mg spray significantly increased Fe(OH)3 (s) solubilization in the root environment, at least in part due to higher passive H+ transport from the roots into the solution. The active transport of H+ and root activity of ATPase was significantly lower in the plants receiving Mg in comparison with those not receiving Mg. In contrast, the passive transport of H+ was higher in the Mg treatments as compared with the control. Our results suggest that foliar applied Mg can moderate the root activity of ATPase pump but it may affect Fe solubility in the root media by enhancing the passive H+ permeation across plasma membrane.

8.
Stem Cell Investig ; 5: 31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498742

RESUMO

BACKGROUND: The primary cell seeding density of bone marrow-derived mononuclear cells (BM-MNCs) affects several cellular behaviors, including attachment to the culture dish, proliferation, and differentiation. METHODS: The aim of this study was to determine the best density of equine BM-MNCs in primary culture (P0) for obtaining the maximum bone marrow-derived mesenchymal stem cell (BM-MSC) yields at the end of P0. Bone marrow samples of two healthy mares were aspirated. The MNCs were isolated and cultured at different densities (1×105, 2×105, 4×105, 8×105, and 1×106 cells/cm2). Within the 7th and 14th days after seeding, the colonies containing more than 15 cells were counted and the percentage of confluency and the number of cells were calculated on day 21. RESULTS: The lowest density of MNCs was associated with the least number of colonies, number of adherent cells, and confluency percentage, whereas the highest density was associated with the maximum number of colonies and confluency percentage (P<0.05). However, the maximum number of cells at the end of P0 was associated with the intermediate (4×105 cells/cm2) and the highest concentration (P<0.05). CONCLUSIONS: The maximum number of MSCs at the end of P0 was obtained at the densities of 1×106 and, especially, at 4×105 cells/cm2.

9.
Philos Trans R Soc Lond B Biol Sci ; 372(1728)2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28717022

RESUMO

In this study, we investigated the responses of Phaeodactylum tricornutum cells acclimated to 300 µmol m-2 s-1 photon flux density to an increase (1000 µmol m-2 s-1) or decrease (30 µmol m-2 s-1) in photon flux densities. The light shift occurred abruptly after 5 days of growth and the acclimation to new conditions was followed during the next 6 days at the physiological and molecular levels. The molecular data reflect a rearrangement of carbon metabolism towards the production of phosphoenolpyruvic acid (PEP) and/or pyruvate. These intermediates were used differently by the cell as a function of the photon flux density: under low light, photosynthesis was depressed while respiration was increased. Under high light, lipids and proteins accumulated. Of great interest, under high light, the genes coding for the synthesis of aromatic amino acids and phenolic compounds were upregulated suggesting that the shikimate pathway was activated.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.


Assuntos
Dióxido de Carbono/metabolismo , Diatomáceas/metabolismo , Luz , Fotossíntese , Carbono/metabolismo , Diatomáceas/efeitos da radiação
10.
Int J Stem Cells ; 10(1): 93-102, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28222255

RESUMO

BACKGROUND: Application of competent cells such as mesenchymal stem cells (MSCs) for treatment of musculoskeletal disorders in equine athletes is increasingly needed. Moreover, similarities of horse and human in size, load and types of joint injuries, make horse as a good model for MSCs therapy studies. This study was designed to isolate and characterize stemness signature of equine bone marrow-derived mesenchymal stem cells (BM-MSCs). METHODS: BM of three mares was aspirated and the mononuclear cells (MNCs) were isolated using density gradient. The primary MNCs were cultured and analyzed after tree passages (P3) for growth characteristics, differentiation potentials, and the expression of genes including CD29, CD34, CD44, CD90, CD105, MHC-I, MHC-II and pluripotency related genes (Nanog, Oct-4, Sox-2, SSEA-1, -3, -4) using RT-PCR or immunocytochemistry techniques. RESULTS: The isolated cells in P3 were adherent and fibroblast-like in shape with doubling times of 78.15 h. Their clonogenic capacity was 8.67±4% and they were able to differentiate to osteogenic, adipogenic and chondrogenic lineages. Cells showed expression of CD29, CD44, CD90, MHC-I and Sox-2 while no expression for CD34, MHC-II, CD105, and pluripotency stemness markers was detected. CONCLUSIONS: In conclusion, data showed that isolated cells have the basic and minimal criteria for MSCs, however, expressing only one pluripotency gene (sox-2).

11.
Int J Phytoremediation ; 17(9): 853-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26091425

RESUMO

Heavy metal bioaccumulation can be affected by various crop-weed interactions that potentially exist in agroecosystems. A pot experiment was conducted to evaluate the role of rhizosphere interaction of sunflower and purslane (Portulaca oleracea L.) weed on cadmium (Cd) uptake and its allocation to sunflower grains. The experimental treatments consisted of two cropping systems (mono and mixed culture), two adjusted salinity levels (0 and 0.5% NaCl) and three artificial levels of Cd in soil (Control, 3 and 6 mg kg(-1)). The results showed that the growth of sunflower in the presence of purslane in comparison to mono culture of sunflower led to change of total Cd content and Cd allocated to grains only in saline conditions. Promoting effects of salinity on Cd concentration of grain were alleviated where sunflower was co-planted with purslane. Besides, supply of Zn in grains of co-planted sunflower was strongly affected by salinity. Results of this study revealed that although co-planted purslane could alter conditions in the shared rhizosphere, it had no effect on enhancing Cd uptake by neighboring sunflower directly.


Assuntos
Cádmio/metabolismo , Helianthus/metabolismo , Portulaca/metabolismo , Salinidade , Poluentes do Solo/metabolismo , Solo/química , Biodegradação Ambiental , Rizosfera
12.
Med Image Anal ; 16(4): 840-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22377656

RESUMO

Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Interpretação Estatística de Dados , Humanos , Aumento da Imagem/métodos , Cadeias de Markov , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Funct Plant Biol ; 30(3): 291-300, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32689011

RESUMO

The effects of a sustained period of moderately high temperature were evaluated on the availability of substrate and the activity of starch synthase (ADP-glucose: 1,4-α-D-glucan 4-α-D-glucosyltransferase, EC 2.4.1.21) in the developing grains of two wheat Triticum aestivum L. cultivars differing in their tolerance to high temperature. Final grain weight was reduced by 33% in the least sensitive (cv. Kavko) and by 40% in the most sensitive (cv. Lyallpur) cultivar as post-anthesis temperature was raised from 20/15°C (day/night) to 30/25°C. The difference in the response of the two cultivars was mainly due to changes in the rate of grain filling at high temperature. The response of the rate of grain filling at high temperature, and the differential effects on the two cultivars, did not seem to be explained by an effect of temperature on the supply of assimilate (sucrose) or on the availability of the substrate for starch synthesis (ADP-glucose) in the grains. In vitro, but not in vivo, the differential responses of the efficiency (Vmax/Km) of soluble starch synthase in the two cultivars to an increase in temperature were associated with differences in the temperature sensitivity of grain filling. In vivo, the most remarkable difference between the two varieties was in the absolute values of the efficiency of soluble starch synthase, with the most tolerant cultivar having the highest efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...