Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(32): 12965-12975, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37531196

RESUMO

Stereoactive electron lone pairs derived from filled 5/6s2 states of p-block cations are an intriguing electronic and geometric structure motif that have been exploited for diverse applications such as thermoelectrics, thermochromics, photocatalysis, and nonlinear optics. Layered trivanadates are dynamic intercalation hosts, where the insertion of cations can be used to tune electron correlation, charge localization, and magnetic ordering. However, the interaction of 5/6s2 stereoactive electron lone pairs with layered trivanadates remains unexplored. In this study, we contrast s- and p-block trivanadates and map off-centering in the coordination environment and reduction in symmetry arising from the stereochemical activity of lone pair cations to the emergence of filled antibonding lone-pair 6s2-O 2p hybridized states. The former is studied by high-resolution single-crystal X-ray diffraction studies of TlV3O8 and isostructural RbV3O8 to probe distinct differences in Tl and Rb coordination environments and the resulting modulation of V-V interactions in V3O8 slabs. The latter has been probed by variable-energy hard X-ray photoelectron spectroscopy (HAXPES) measurements, which manifest orbital-specific contributions from bonding and antibonding interactions of stereoactive Tl 6s2 electron lone pairs in TlV3O8. The spectroscopic assignment of valence band states to stereoactive lone pairs is further corroborated by first-principles electronic structure calculations, crystal orbital Hamilton population analyses, and electron localization function maps. The presence of the Tl 6s2 electron lone pair in TlV3O8 brings about the off-centering of Tl+ cations, which leads to anisotropy in Tl-O bonds. The off-centering of Tl ions weakens V-O bonds in one direction, which subsequently strengthens directional V-V coupling. Magnetic measurements reveal ferromagnetic signatures for both RbV3O8 and TlV3O8. However, the differences in V···V interactions significantly affect the energy balance of the superexchange interactions, resulting in an ordering temperature of 140 K for TlV3O8 as compared to 125 K for RbV3O8. The results demonstrate the distinctive effects of stereochemically active lone pairs in modifying electronic structure near the Fermi level and for mediating superexchange interactions.

2.
Sci Adv ; 9(26): eadf1701, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379381

RESUMO

Carbon (13C) and oxygen (18O) isotopes in carbonates form clumped isotope species inversely correlated with temperature, providing a valuable paleothermometer for sedimentary carbonates and fossils. However, this signal resets ("reorders") with increasing temperature after burial. Research on reordering kinetics has characterized reordering rates and hypothesized the effects of impurities and trapped water, but the atomistic mechanism remains obscure. This work studies carbonate-clumped isotope reordering in calcite via first-principles simulations. We developed an atomistic view of the isotope exchange reaction between carbonate pairs in calcite, discovering a preferred configuration and elucidating how Mg2+ substitution and Ca2+ vacancies lower the free energy of activation (ΔA‡) compared to pristine calcite. Regarding water-assisted isotopic exchange, the H+-O coordination distorts the transition state configuration and reduces ΔA‡. We proposed a water-mediated exchange mechanism showing the lowest ΔA‡ involving a reaction pathway with a hydroxylated four-coordinated carbon atom, confirming that internal water facilitates clumped isotope reordering.

3.
Chem Mater ; 35(17): 7175-7188, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-38357226

RESUMO

The 5/6s2 lone-pair electrons of p-block cations in their lower oxidation states are a versatile electronic and geometric structure motif that can underpin lattice anharmonicity and often engender electronic and structural instabilities that underpin the function of active elements in nonlinear optics, thermochromics, thermoelectrics, neuromorphic computing, and photocatalysis. In contrast to periodic solids where lone-pair-bearing cations are part of the structural framework, installing lone-pair-bearing cations in the interstitial sites of intercalation hosts provides a means of a systematically modulating electronic structure through the choice of the group and the period of the inserted cation while preserving the overall framework connectivity. The extent of stereochemical activity and the energy positioning of lone-pair-derived mid-gap states depend on the cation identity, stoichiometry, and strength of anion hybridization. V2O5 polymorphs are versatile insertion hosts that can accommodate a broad range of s-, p-, and d-block cations. However, the insertion of lone-pair-bearing cations remains largely underexplored. In this article, we examine the implications of varying the 6s2 cations situated in interlayer sites between condensed [V4O10]n double layers. Systematic modulations of lattice distortions, electronic structure, and magnetic ordering are observed with increasing strength of stereochemical activity from group 12 to group 14 cations. We compare and contrast p-block-layered MxV2O5 (M = Hg, Tl, and Pb) compounds and map the significance of local off-centering arising from the stereochemical activity of lone-pair cations to the emergence of filled antibonding lone-pair 6s2-O 2p-hybridized mid-gap states mediated by second-order Jahn-Teller distortions. Crystallographic studies of cation coordination environments and the resulting modulation of V-V interactions have been used in conjunction with variable-energy hard X-ray photoelectron spectroscopy measurements, first-principles electronic structure calculations, and crystal orbital Hamilton population analyses to decipher the origins of stereochemical activity. Magnetic susceptibility measurements reveal antiferromagnetic signatures for all the three compounds. However, the differences in V-V interactions significantly affect the energy balance of the superexchange interactions, resulting in an ordering temperature of 160 and 260 K for Hg0.5V2O5 and δ-Tl0.5V2O5, respectively, as compared to 7 K for δ-Pb0.5V2O5. In δ-Pb0.5V2O5, the strong stereochemical activity of electron lone pairs and the resulting electrostatic repulsions enforce superlattice ordering, which strongly modifies the electronic localization patterns along the [V4O10] slabs, resulting in disrupted magnetic ordering and an anomalously low ordering temperature. The results demonstrate a versatile strategy for toggling the stereochemical activity of electron lone pairs to modify the electronic structure near the Fermi level and to mediate superexchange interactions.

4.
iScience ; 25(10): 105063, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36157574

RESUMO

Oil production in the Permian Basin gives rise to large volumes of produced water contaminated by silt, emulsified oil, and additives used for enhanced oil recovery. There is intense interest in the design of membrane modules as sustainable alternatives for produced water treatment to enable the reuse of produced water for agricultural applications, injection into aquifers, and redeployment in oil recovery. Here, we report a hierarchically textured cement-based membrane exhibiting orthogonal wettability, specifically, superhydrophilic and underwater superoleophobic characteristics. The in situ formation of ettringite needles accompanied by embedding of glass spheres imbues multiscale texturation to stainless-steel mesh membranes, enabling the separation of silt and oil from produced water at high flux rates (1600 L h-1Û°m-2, at ca. 2.7 bar). Oil concentration is reduced as low as 1 ppb with an overall separation efficiency of 99.7% in single-pass filtration. The membranes show outstanding mechanical resilience and retention of performance across multiple cycles.

5.
Chem Commun (Camb) ; 58(46): 6586-6589, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35550650

RESUMO

The metal-to-insulator transition of VO2 underpins applications in thermochromics, neuromorphic computing, and infrared vision. Ge alloying is shown to elevate the transition temperature by promoting V-V dimerization, thereby expanding the stability of the monoclinic phase to higher temperatures. By suppressing the propensity for oxygen vacancy formation, Ge alloying renders the hysteresis of the transition exquisitely sensitive to oxygen stoichiometry.

6.
Chem Sci ; 12(24): 8438-8444, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34221325

RESUMO

It is urgently desired yet challenging to synthesize porous graphitic carbon (PGC) in a bottom-up manner while circumventing the need for high-temperature pyrolysis. Here we present an effective and scalable strategy to synthesize PGC through acid-mediated aldol triple condensation followed by low-temperature graphitization. The deliberate structural design enables its graphitization in situ in solution and at low pyrolysis temperature. The resulting material features ultramicroporosity characterized by a sharp pore size distribution. In addition, the pristine homogeneous composition of the reaction mixture allows for solution-processability of the material for further characterization and applications. Thin films of this PGC exhibit several orders of magnitude higher electrical conductivity compared to analogous control materials that are carbonized at the same temperatures. The integration of low-temperature graphitization and solution-processability not only allows for an energy-efficient method for the production and fabrication of PGC, but also paves the way for its wider employment in applications such as electrocatalysis, sensing, and energy storage.

7.
ACS Appl Mater Interfaces ; 9(28): 24190-24197, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28644011

RESUMO

Water, the driver of nature, has always been polluted by the blind hurling of highly toxic contaminants, but human-friendly science has continuously been presenting better avenues to help solve these challenging issues. In this connection, the present study introduces novel nanocomposites composed of emulsion-templated hierarchically porous poly(1-vinylimidazole) beads loaded with the silver nanoparticles generated via an in situ approach. These nanocomposites have been thoroughly characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller, and field emission scanning electron microscopy. The appropriate surface chemistry, good thermal stability, swelling behavior, porosity, and nanodimensions contributed to achieve very good performance in water treatment. Owing to their easier handling and separation, these novel nanocomposites are highly efficient to remove arsenic and eriochrome black T with decent adsorption capacities in addition to the inactivation and killing of Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...