Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38703322

RESUMO

Enterococcus has emerged as an opportunistic pathogen because of its antibiotic resistance and virulence profile, which makes it a causative agent of several diseases like endocarditis, surgical site, and urinary tract infections. Currently, species of this genus are the 2nd most frequently isolated microorganisms from hospital-acquired infections. Significant association with hospitals and unhygienic conditions of the environments has made them resistant to a wide range of antibiotics. On the brighter side, enterococci have the ability to produce antimicrobial proteins (i.e., enterocins) that exhibit wide antagonistic activity, thus making them useful microbes in the food and pharmaceutical industries. Enterocins are also involved in niche control in gut microbiota which is regulated by the quorum sensing (QS) system. A bacterial communication system that is controlled by the fsr operon in enterococci consists of FsrABDC, ef1097, and GelE/SprE genes. Hence, the present study was conducted for molecular assessment of enterocins and quorum sensing genes, inter-environmental correlation, and species prevalence of enterococci isolated from different environmental niches of Karachi, Pakistan. Obtained results revealed the highest prevalence of E. faecium and E. faecalis in all environments. Bacterial antagonism and enterocin genes were observed significantly high in poultry environments. The inter-environmental correlation indicated a strong positive correlation of freshwater with sewage and soil environments. Similarly, the fsr regulatory system was mostly identified in poultry-related environments, and a significant correlation between QS system and biofilm formation was established. In conclusion, this study confirmed the high prevalence of E. faecium in all tested sources, high enterocin production in non-clinical environments, and more fsr regulatory genes in poultry-related environments.

2.
Zoonoses Public Health ; 65(8): 921-935, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30105884

RESUMO

This study aimed to investigate the zoonotic potential by virtue of phylogenetic analysis, virulence and resistance gene profiles of Enterococcus faecalis originating from poultry environment. The ERIC, BOX and RAPD PCR analysis showed the clustering of E. faecalis strains (n = 74) into five groups (G1-G5) and fifteen sub-clusters (B1-B15), which share 50%-80% similarities with ATCC E. faecalis and clinical strains of human infection. E. faecalis strains harboured seven enterocins genes including ent1097 (85%), entB (84%), enterolysinA (51%), entSEK4 (51%), entL50 (31%), entA (25.7%) and ent1071 (14.9%). The highest prevalence of gelE-sprE (90%), lip-fl (90%) followed by cylL (62%), hyl (60%), katA (16%) and cylA (5.4%) was observed in poultry isolates. The fsr operon and gelE-sprE was co-associated in 66.2% strains. E. faecalis also harboured biofilm and endocarditis-associated genes, including efaAfs (97%), ebp-pilli (ebpABC and srtC 69.9%-80%), asa1 (71%), agg (55%), ace (54%) and esp-Tim (3%). Despite all found sensitive to vancomycin, 98.6% strains were multi-drug resistant to five to twelve tested antimicrobials. An increased-level of resistance (≥32 µg/ml) was observed to ampicillin (8.1%), meropenem (21.6%), chloramphenicol (73.4%), erythromycin (90.5%), tetracycline (100%) and high-level resistance to kanamycin (79.7%) and gentamicin (52.7%). The multi-drug resistant E. faecalis (MDRe.f) were carried pbp4 (90%), tetL (90%), tetM (70%), ermB (81%), cat (52.7%), acc6-aph2 (58.1%), aaph(3)-III (49.9%), gyrA (97%) and parC (98%) genes. Moreover, these MDRe.f were also harboured, hospital-associated marker IS16 (58%) and pheromone responsive genes, that is ccf (88%), cpd (74%), cob (62%) and eep (66%). Thus, regardless of the distinct phylogenetic background of E. faecalis of poultry origin, ATCC E. faecalis and clinical strains of human origin, we found major similarities in virulence, resistance gene profiles and mobile genetic elements (IS16 and pheromone responsive plasmids), supporting the zoonotic/reverse zoonotic risk associated with this organism.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Aves Domésticas/microbiologia , Animais , Proteínas de Bactérias/genética , Enterococcus faecalis/isolamento & purificação , Enterococcus faecalis/patogenicidade , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/transmissão , Humanos , Sequências Repetitivas Dispersas/genética , Testes de Sensibilidade Microbiana , Saúde Única , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/transmissão , Técnica de Amplificação ao Acaso de DNA Polimórfico , Vancomicina/farmacologia , Virulência , Fatores de Virulência/genética , Zoonoses/epidemiologia , Zoonoses/microbiologia , Zoonoses/transmissão
3.
Microb Pathog ; 111: 252-261, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28888881

RESUMO

Resistance against antimicrobial agents in enterococci is a global concern that not only challenges infection therapy but also make them reservoir of antibiotic resistance in human and animal alike. This study was conducted to establish tetracycline resistance profiles, prevalence of tet genes and transposable element (Tn916) in enterococcal soil and clinical isolates. Enterococci (n = 1210) from different environmental niche were collected and subjected to molecular identification. In total, 361 isolates showed tetracycline resistance at the breakpoint of 32 µg ml-1. MICs (32-512 µg ml-1) were established by both agar and micro-broth dilution methods. Soil isolates (n = 76) were further investigated for Tet genes (tet-A, C, K, L, M, S, O) and Tn916. Major resistance was observed in E. faecium 67% followed by E. faecalis 22%, E. hirae 8% and E. casseliflavus 2.6%. Results revealed that tet(L) was more frequently found in E. faecium 74.5%, while tet(M) was in high prevalence in E. faecalis 82.3%. Tn916 was detected in both clinical and soil isolates (i.e. 43.3% and 19.7%, respectively). RAPD-PCR analysis showed high diversity among the investigated isolates. Cumulatively, our results revealed high-level tetracycline resistance and the presence of multiple Tet genes and transposable element Tn916 in enterococci.


Assuntos
Elementos de DNA Transponíveis/genética , Enterococcus/genética , Enterococcus/isolamento & purificação , Microbiologia Ambiental , Resistência a Tetraciclina/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequência de Bases , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus/classificação , Enterococcus/efeitos dos fármacos , Genes Bacterianos , Variação Genética , Genótipo , Técnicas de Genotipagem , Testes de Sensibilidade Microbiana , Paquistão , Fenótipo , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...