Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 30(6): 695-709, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38443114

RESUMO

In spliceosome assembly, the 5' splice site is initially recognized by U1 snRNA. U1 leaves the spliceosome during the assembly process, therefore other factors contribute to the maintenance of 5' splice site identity as it is loaded into the catalytic site. Recent structural data suggest that human tri-snRNP 27K (SNRP27) M141 and SNU66 H734 interact to stabilize the U4/U6 quasi-pseudo knot at the base of the U6 snRNA ACAGAGA box in pre-B complex. Previously, we found that mutations in Caenorhabditis elegans at SNRP-27 M141 promote changes in alternative 5'ss usage. We tested whether the potential interaction between SNRP-27 M141 and SNU-66 H765 (the C. elegans equivalent position to human SNU66 H734) contributes to maintaining 5' splice site identity during spliceosome assembly. We find that SNU-66 H765 mutants promote alternative 5' splice site usage. Many of the alternative 5' splicing events affected by SNU-66(H765G) overlap with those affected SNRP-27(M141T). Double mutants of snrp-27(M141T) and snu-66(H765G) are homozygous lethal. We hypothesize that mutations at either SNRP-27 M141 or SNU-66 H765 allow the spliceosome to load alternative 5' splice sites into the active site. Tests with mutant U1 snRNA and swapped 5' splice sites indicate that the ability of SNRP-27 M141 and SNU-66 H765 mutants to affect a particular 5' splice alternative splicing event is dependent on both the presence of a weaker consensus 5'ss nearby and potentially nearby splicing factor binding sites. Our findings confirm a new role for the C terminus of SNU-66 in maintenance of 5' splice site identity during spliceosome assembly.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Sítios de Splice de RNA , RNA Nuclear Pequeno , Spliceossomos , Spliceossomos/metabolismo , Spliceossomos/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Animais , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mutação , Humanos , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Processamento Alternativo
2.
RNA ; 30(4): 404-417, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38282418

RESUMO

RNA helicases drive necessary rearrangements and ensure fidelity during the pre-mRNA splicing cycle. DEAD-box helicase DDX41 has been linked to human disease and has recently been shown to interact with DEAH-box helicase PRP22 in the spliceosomal C* complex, yet its function in splicing remains unknown. Depletion of DDX41 homolog SACY-1 from somatic cells has been previously shown to lead to changes in alternative 3' splice site (3'ss) usage. Here, we show by transcriptomic analysis of published and novel data sets that SACY-1 perturbation causes a previously unreported pattern in alternative 3' splicing in introns with pairs of 3' splice sites ≤18 nt away from each other. We find that both SACY-1 depletion and the allele sacy-1(G533R) lead to a striking unidirectional increase in the usage of the proximal (upstream) 3'ss. We previously discovered a similar alternative splicing pattern between germline tissue and somatic tissue, in which there is a unidirectional increase in proximal 3'ss usage in the germline for ∼200 events; many of the somatic SACY-1 alternative 3' splicing events overlap with these developmentally regulated events. We generated targeted mutant alleles of the Caenorhabditis elegans homolog of PRP22, mog-5, in the region of MOG-5 that is predicted to interact with SACY-1 based on the human C* structure. These viable alleles, and a mimic of the myelodysplastic syndrome-associated allele DDX41(R525H), all promote the usage of proximal alternative adjacent 3' splice sites. We show that PRP22/MOG-5 and DDX41/SACY-1 have overlapping roles in proofreading the 3'ss.


Assuntos
Sítios de Splice de RNA , Spliceossomos , Humanos , Sítios de Splice de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Splicing de RNA , Processamento Alternativo , RNA Helicases/genética , RNA Helicases/metabolismo , DNA Helicases/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
3.
Nucleic Acids Res ; 50(20): 11834-11857, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321655

RESUMO

The spliceosome undergoes extensive rearrangements as it assembles onto precursor messenger RNAs. In the earliest assembly step, U1snRNA identifies the 5' splice site. However, U1snRNA leaves the spliceosome relatively early in assembly, and 5' splice site identity is subsequently maintained through interactions with U6snRNA, protein factor PRP8, and other components during the rearrangements that build the catalytic site. Using a forward genetic screen in Caenorhabditis elegans, we have identified suppressors of a locomotion defect caused by a 5'ss mutation. Here we report three new suppressor alleles from this screen, two in PRP8 and one in SNRNP200/BRR2. mRNASeq studies of these suppressor strains indicate that they also affect specific native alternative 5'ss, especially for suppressor PRP8 D1549N. A strong suppressor at the unstructured N-terminus of SNRNP200, N18K, indicates a novel role for this region. By examining distinct changes in the splicing of native genes, examining double mutants between suppressors, comparing these new suppressors to previously identified splicing suppressors from yeast, and mapping conserved suppressor residues onto cryoEM structural models of assembling human spliceosomes, we conclude that there are multiple interactions at multiple stages in spliceosome assembly responsible for maintaining the initial 5'ss identified by U1snRNA for entry into the catalytic core.


Assuntos
Sítios de Splice de RNA , Fatores de Processamento de RNA , Spliceossomos , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mutação , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Fatores de Processamento de RNA/genética
4.
PLoS Genet ; 18(2): e1010028, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143478

RESUMO

Pre-mRNA splicing is an essential step of eukaryotic gene expression carried out by a series of dynamic macromolecular protein/RNA complexes, known collectively and individually as the spliceosome. This series of spliceosomal complexes define, assemble on, and catalyze the removal of introns. Molecular model snapshots of intermediates in the process have been created from cryo-EM data, however, many aspects of the dynamic changes that occur in the spliceosome are not fully understood. Caenorhabditis elegans follow the GU-AG rule of splicing, with almost all introns beginning with 5' GU and ending with 3' AG. These splice sites are identified early in the splicing cycle, but as the cycle progresses and "custody" of the pre-mRNA splice sites is passed from factor to factor as the catalytic site is built, the mechanism by which splice site identity is maintained or re-established through these dynamic changes is unclear. We performed a genetic screen in C. elegans for factors that are capable of changing 5' splice site choice. We report that KIN17 and PRCC are involved in splice site choice, the first functional splicing role proposed for either of these proteins. Previously identified suppressors of cryptic 5' splicing promote distal cryptic GU splice sites, however, mutations in KIN17 and PRCC instead promote usage of an unusual proximal 5' splice site which defines an intron beginning with UU, separated by 1nt from a GU donor. We performed high-throughput mRNA sequencing analysis and found that mutations in PRCC, and to a lesser extent KIN17, changed alternative 5' splice site usage at native sites genome-wide, often promoting usage of nearby non-consensus sites. Our work has uncovered both fine and coarse mechanisms by which the spliceosome maintains splice site identity during the complex assembly process.


Assuntos
Caenorhabditis elegans , Sítios de Splice de RNA , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Íntrons/genética , Mutação , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(6): 2193-2199, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674666

RESUMO

Pre-mRNA splicing must occur with extremely high fidelity. Spliceosomes assemble onto pre-mRNA guided by specific sequences (5' splice site, 3' splice site, and branchpoint). When splice sites are mutated, as in many hereditary diseases, the spliceosome can aberrantly select nearby pseudo- or "cryptic" splice sites, often resulting in nonfunctional protein. How the spliceosome distinguishes authentic splice sites from cryptic splice sites is poorly understood. We performed a Caenorhabditis elegans genetic screen to find cellular factors that affect the frequency with which the spliceosome uses cryptic splice sites and identified two alleles in core spliceosome component Prp8 that alter cryptic splicing frequency. Subsequent complementary genetic and structural analyses in yeast implicate these alleles in the stability of the spliceosome's catalytic core. However, despite a clear effect on cryptic splicing, high-throughput mRNA sequencing of these prp-8 mutant C. elegans reveals that overall alternative splicing patterns are relatively unchanged. Our data suggest the spliceosome evolved intrinsic mechanisms to reduce the occurrence of cryptic splicing and that these mechanisms are distinct from those that impact alternative splicing.


Assuntos
Processamento Alternativo , Sítios de Splice de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Proteínas de Saccharomyces cerevisiae/genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos , Animais , Caenorhabditis elegans , Sequência Conservada , Frequência do Gene , Loci Gênicos , Modelos Moleculares , Conformação Proteica , Precursores de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Proteínas de Saccharomyces cerevisiae/química , Spliceossomos
6.
RNA ; 24(10): 1314-1325, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30006499

RESUMO

The tri-snRNP 27K protein is a component of the human U4/U6-U5 tri-snRNP and contains an N-terminal phosphorylated RS domain. In a forward genetic screen in C. elegans, we previously identified a dominant mutation, M141T, in the highly-conserved C-terminal region of this protein. The mutant allele promotes changes in cryptic 5' splice site choice. To better understand the function of this poorly characterized splicing factor, we performed high-throughput mRNA sequencing analysis on worms containing this dominant mutation. Comparison of alternative splice site usage between the mutant and wild-type strains led to the identification of 26 native genes whose splicing changes in the presence of the snrp-27 mutation. The changes in splicing are specific to alternative 5' splice sites. Analysis of new alleles suggests that snrp-27 is an essential gene for worm viability. We performed a novel directed-mutation experiment in which we used the CRISPR-cas9 system to randomly generate mutations specifically at M141 of SNRP-27. We identified eight amino acid substitutions at this position that are viable, and three that are homozygous lethal. All viable substitutions at M141 led to varying degrees of changes in alternative 5' splicing of native targets. We hypothesize a role for this SR-related factor in maintaining the position of the 5' splice site as U1snRNA trades interactions at the 5' end of the intron with U6snRNA and PRP8 as the catalytic site is assembled.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Sítios de Splice de RNA , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Análise de Sequência de RNA
7.
PLoS One ; 12(2): e0170870, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28207760

RESUMO

During its sexual reproduction, the stichotrichous ciliate Oxytricha trifallax orchestrates a remarkable transformation of one of the newly formed germline micronuclear genomes. Hundreds of thousands of gene pieces are stitched together, excised from chromosomes, and replicated dozens of times to yield a functional somatic macronuclear genome composed of ~16,000 distinct DNA molecules that typically encode a single gene. Little is known about the proteins that carry out this process. We profiled mRNA expression as a function of macronuclear development and identified hundreds of mRNAs preferentially expressed at specific times during the program. We find that a disproportionate number of these mRNAs encode proteins that are involved in DNA and RNA functions. Many mRNAs preferentially expressed during macronuclear development have paralogs that are either expressed constitutively or are expressed at different times during macronuclear development, including many components of the RNA polymerase II machinery and homologous recombination complexes. Hundreds of macronuclear development-specific genes encode proteins that are well-conserved among multicellular eukaryotes, including many with links to germline functions or development. Our work implicates dozens of DNA and RNA-binding proteins with diverse evolutionary trajectories in macronuclear development in O. trifallax. It suggests functional connections between the process of macronuclear development in unicellular ciliates and germline specialization and differentiation in multicellular organisms, and argues that gene duplication is a key source of evolutionary innovation in this process.


Assuntos
DNA de Protozoário/genética , Evolução Molecular , Perfilação da Expressão Gênica , Macronúcleo/metabolismo , Oxytricha/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Macronúcleo/genética , Oxytricha/genética , Oxytricha/crescimento & desenvolvimento , Filogenia , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/genética
8.
Genome Res ; 25(7): 982-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25922281

RESUMO

Adjacent alternative 3' splice sites, those separated by ≤18 nucleotides, provide a unique problem in the study of alternative splicing regulation; there is overlap of the cis-elements that define the adjacent sites. Identification of the intron's 3' end depends upon sequence elements that define the branchpoint, polypyrimidine tract, and terminal AG dinucleotide. Starting with RNA-seq data from germline-enriched and somatic cell-enriched Caenorhabditis elegans samples, we identify hundreds of introns with adjacent alternative 3' splice sites. We identify 203 events that undergo tissue-specific alternative splicing. For these, the regulation is monodirectional, with somatic cells preferring to splice at the distal 3' splice site (furthest from the 5' end of the intron) and germline cells showing a distinct shift toward usage of the adjacent proximal 3' splice site (closer to the 5' end of the intron). Splicing patterns in somatic cells follow C. elegans consensus rules of 3' splice site definition; a short stretch of pyrimidines preceding an AG dinucleotide. Splicing in germline cells occurs at proximal 3' splice sites that lack a preceding polypyrimidine tract, and in three instances the germline-specific site lacks the AG dinucleotide. We provide evidence that use of germline-specific proximal 3' splice sites is conserved across Caenorhabditis species. We propose that there are differences between germline and somatic cells in the way that the basal splicing machinery functions to determine the intron terminus.


Assuntos
Processamento Alternativo , Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Sítios de Splice de RNA , Animais , Composição de Bases , Proteínas de Caenorhabditis elegans/genética , Éxons , Estudo de Associação Genômica Ampla , Células Germinativas/metabolismo , Íntrons , Especificidade de Órgãos/genética , Estabilidade de RNA , Fases de Leitura
9.
Dev Cell ; 28(2): 111-2, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24480639

RESUMO

In ciliated protozoans, small RNAs (sRNAs) are integral to guiding large-scale genomic rearrangements after mating. Sandoval et al. (2014) report in this issue of Developmental Cell the discovery of a class of Paramecium sRNAs, produced by a unique Dicer-like enzyme, that likely provides late stage quality control in this process.


Assuntos
Genoma de Protozoário , Paramecium tetraurellia/genética , RNA de Protozoário/genética , Pequeno RNA não Traduzido/genética , Ribonuclease III/genética
10.
PLoS One ; 7(8): e42371, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22900016

RESUMO

Ciliated protozoans possess two types of nuclei; a transcriptionally silent micronucleus, which serves as the germ line nucleus, and a transcriptionally active macronucleus, which serves as the somatic nucleus. The macronucleus is derived from a new diploid micronucleus after mating, with epigenetic information contributed by the parental macronucleus serving to guide the formation of the new macronucleus. In the stichotrichous ciliate Oxytricha trifallax, the macronuclear DNA is highly processed to yield gene-sized nanochromosomes with telomeres at each end. Here we report that soon after mating of Oxytricha trifallax, abundant 27 nt small RNAs are produced that are not present prior to mating. We performed next generation sequencing of Oxytricha small RNAs from vegetative and mating cells. Using sequence comparisons between macronuclear and micronuclear versions of genes, we found that the 27 nt RNA class derives from the parental macronucleus, not the developing macronucleus. These small RNAs are produced equally from both strands of macronuclear nanochromosomes, but in a highly non-uniform distribution along the length of the nanochromosome, and with a particular depletion in the 30 nt telomere-proximal positions. This production of small RNAs from the parental macronucleus during macronuclear development stands in contrast to the mechanism of epigenetic control in the distantly related ciliate Tetrahymena. In that species, 28-29 nt scanRNAs are produced from the micronucleus and these micronuclear-derived RNAs serve as epigenetic controllers of macronuclear development. Unlike the Tetrahymena scanRNAs, the Oxytricha macronuclear-derived 27 mers are not modified by 2'O-methylation at their 3' ends. We propose models for the role of these "27macRNAs" in macronuclear development.


Assuntos
Macronúcleo/genética , Oxytricha/genética , RNA de Protozoário/genética , RNA Nuclear Pequeno/genética , Regulação da Expressão Gênica , Genoma de Protozoário , Macronúcleo/metabolismo , Oxytricha/fisiologia , RNA de Protozoário/química , RNA Nuclear Pequeno/química , Análise de Sequência de RNA , Telômero/genética
11.
WormBook ; : 1-21, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22467343

RESUMO

Alternative splicing is a common mechanism for the generation of multiple isoforms of proteins. It can function to expand the proteome of an organism and can serve as a way to turn off gene expression after transcription. This review focuses on splicing, its regulation and the progress in this field achieved through studies in C. elegans. Recent experiments, including RNA-Seq to uncover and measure the extent of alternative splicing, comparative genomics to identify splicing regulatory elements, and the development of elegant genetic screens using fluorescent reporter constructs, have increased our understanding of the cis-acting sequences that regulate alternative splicing and the trans-acting protein factors that bind to these sequences. The topics covered in this review include constitutive splicing factors, identification of alternatively spliced genes, alternative splicing regulation and the coupling of alternative splicing to nonsense-mediated decay. The significant progress towards uncovering the alternative splicing code in this organism is discussed.


Assuntos
Caenorhabditis elegans/genética , Splicing de RNA , Processamento Alternativo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Genes de Helmintos , Precursores de RNA/metabolismo , RNA de Helmintos/metabolismo , RNA Mensageiro/metabolismo
12.
Nucleic Acids Res ; 39(11): 4827-35, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21335607

RESUMO

MicroRNAs control gene expression by post-transcriptional down-regulation of their target mRNAs. Complementarity between the seed region (nucleotides 2-8) of a microRNA and the 3'-UTR of its target mRNA is the key determinant in recognition. However, the structural basis of the ability of the seed region to dominate target recognition in eukaryotic argonaute complexes has not been directly demonstrated. To better understand this problem, we performed chemical probing of microRNAs held in native argonaute-containing complexes isolated from Caenorhabditis elegans. Direct probing of the RNA backbone in isolated native microRNP complexes shows that the conformation of the seed region is uniquely constrained, while the rest of the microRNA structure is conformationally flexible. Probing the Watson-Crick edges of the bases shows that bases 2-4 are largely inaccessible to solvent, while seed region bases 5-8 are readily modified; collectively our probing results suggest a model in which these bases are primed for initiating base pairing with the target mRNA. In addition, an unusual DMS reactivity with U at position 6 is observed. We propose that interaction of miRNAs with argonaute proteins pre-organizes the structure of the seed sequence for specific recognition of target mRNAs.


Assuntos
MicroRNAs/química , Ribonucleoproteínas/química , Animais , Pareamento de Bases , Caenorhabditis elegans/genética , Carboidratos/química , DNA/química , DNA/metabolismo , Conformação de Ácido Nucleico , Fosfatos/química , RNA Mensageiro/química , Ribonucleoproteínas/metabolismo
13.
Nucleic Acids Res ; 39(2): 666-74, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20805248

RESUMO

Regulation of alternative splicing is controlled by pre-mRNA sequences (cis-elements) and trans-acting protein factors that bind them. The combinatorial interactions of multiple protein factors with the cis-elements surrounding a given alternative splicing event lead to an integrated splicing decision. The mechanism of multifactorial splicing regulation is poorly understood. Using a splicing-sensitive DNA microarray, we assayed 352 Caenorhabditis elegans alternative cassette exons for changes in embryonic splicing patterns between wild-type and 12 different strains carrying mutations in a splicing factor. We identified many alternative splicing events that are regulated by multiple splicing factors. Many splicing factors have the ability to behave as splicing repressors for some alternative cassette exons and as splicing activators for others. Unexpectedly, we found that the ability of a given alternative splicing factor to behave as an enhancer or repressor of a specific splicing event can change during development. Our observations that splicing factors can change their effects on a substrate during development support a model in which combinatorial effects of multiple factors, both constitutive and developmentally regulated ones, contribute to the overall splicing decision.


Assuntos
Processamento Alternativo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Ligação a RNA/genética
14.
J Biol Chem ; 284(42): 28490-7, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19706616

RESUMO

Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/fisiologia , Animais , Sequência de Bases , Caenorhabditis elegans , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Modelos Genéticos , Dados de Sequência Molecular , RNA/química , Interferência de RNA , Splicing de RNA , Elementos Reguladores de Transcrição , Sefarose/química
15.
RNA ; 15(9): 1652-60, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19617316

RESUMO

Alternative splicing coupled to nonsense-mediated decay (AS-NMD) is a mechanism for post-transcriptional regulation of gene expression. We analyzed the global effects of mutations in seven genes of the C. elegans NMD pathway on AS isoform ratios. We find that mutations in two NMD factors, smg-6 and smg-7, have weaker global effects relative to mutations in other smg genes. We did an in-depth analysis of 12 pre-mRNA splicing factor genes that are subject to AS-NMD. For four of these, changes in the ratio of alternatively spliced isoforms during development are caused by developmentally regulated inhibition of NMD, and not by changes in alternative splicing. Using sucrose gradient analysis of mRNAs undergoing translation, we find several examples of NMD-dependent enrichment of premature termination codon (PTC) isoforms in the monosome fraction. In contrast, we present evidence of two genes for which the PTC-containing isoforms are found in polysomes and have a translational profile similar to non-PTC-containing transcripts from the same gene. We propose that NMD of certain alternatively spliced isoforms is regulated, and that some stabilized NMD targets may be translated.


Assuntos
Processamento Alternativo/genética , Caenorhabditis elegans/genética , Códon sem Sentido/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Estabilidade de RNA/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Mapeamento Cromossômico , Códon sem Sentido/genética , Embrião não Mamífero , Genes de Helmintos , Análise em Microsséries , Polirribossomos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Genetics ; 182(3): 725-34, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19380478

RESUMO

Many alleles of human disease genes have mutations within splicing consensus sequences that activate cryptic splice sites. In Caenorhabditis elegans, the unc-73(e936) allele has a G-to-U mutation at the first base of the intron downstream of exon 15, which results in an uncoordinated phenotype. This mutation triggers cryptic splicing at the -1 and +23 positions and retains some residual splicing at the mutated wild-type (wt) position. We previously demonstrated that a mutation in sup-39, a U1 snRNA gene, suppresses e936 by increasing splicing at the wt splice site. We report here the results of a suppressor screen in which we identify three proteins that function in cryptic splice site choice. Loss-of-function mutations in the nonessential splicing factor smu-2 suppress e936 uncoordination through changes in splicing. SMU-2 binds SMU-1, and smu-1(RNAi) also leads to suppression of e936. A dominant mutation in the conserved C-terminal domain of the C. elegans homolog of the human tri-snRNP 27K protein, which we have named SNRP-27, suppresses e936 uncoordination through changes in splicing. We propose that SMU-2, SMU-1, and SNRP-27 contribute to the fidelity of splice site choice after the initial identification of 5' splice sites by U1 snRNP.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas do Tecido Nervoso/genética , Sítios de Splice de RNA/genética , Proteínas Repressoras/genética , Spliceossomos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Mapeamento Cromossômico , Feminino , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Dados de Sequência Molecular , Atividade Motora/genética , Atividade Motora/fisiologia , Mutação , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Homologia de Sequência de Aminoácidos , Supressão Genética
17.
Mol Biol Evol ; 25(11): 2431-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18718918

RESUMO

Evolutionary studies indicate that a high proportion of alternative splicing (AS) events are species-specific; just 28% of minor-form alternatively spliced exons are conserved between mice and humans. We employed a splicing-sensitive microarray to study the evolution of allele-specific AS in nematodes. We compared splicing levels among five distinct Caenorhabditis elegans lines. Our results indicate that AS is less variable between natural isolates (NIs) from England, Hawaii, and Australia than when compared with mutation accumulation lines (6% vs. 21%, respectively, vary compared with N2). This suggests that strong stabilizing selection shapes the evolution of the ratios of isoforms generated by AS in C. elegans. When we analyzed some of the splicing changes between the NIs, we found examples of changes in both cis and trans that lead to alterations in gene-specific AS. This indicates that both these mechanisms for changing AS are employed along the path toward speciation in nematodes.


Assuntos
Processamento Alternativo , Caenorhabditis elegans/genética , RNA de Helmintos/metabolismo , RNA Mensageiro/metabolismo , Seleção Genética , Animais , Sequência de Bases , Caenorhabditis/enzimologia , Caenorhabditis/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Evolução Molecular , Éxons , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/genética , Splicing de RNA , Estabilidade de RNA , RNA de Helmintos/química , RNA Mensageiro/química , RNA Mensageiro/genética , Especificidade da Espécie
18.
PLoS Genet ; 4(2): e1000001, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18454200

RESUMO

Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation.


Assuntos
Processamento Alternativo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Códon sem Sentido , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
RNA ; 13(9): 1492-504, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17652138

RESUMO

MicroRNAs (miRNAs) are regulatory molecules that share both biosynthetic derivation (cleavage from short hairpin precursor RNAs) and functional roles (downregulation of specific mRNAs through targeted degradation and/or translational inhibition). A distinct family of small RNAs, termed siRNAs, have some common characteristics but exhibit distinct modes of biosynthesis and function. In this study, we report procedures for purification of a predominant species of miRNA-containing ribonucleoprotein complexes from Caenorhabditis elegans and demonstrate that this population is distinct from the predominant pool of siRNA-containing ribonucleoprotein complexes. An observed miRNP-associated RNA population consisting predominantly (>95%) of miRNAs supported the unique identity of miRNPs as biological effectors within the cell, provided clean material for analysis of changes in miRNA spectra during development, and provided strong evidence of miRNA character for a number of novel small RNAs. Likewise, the RNA spectrum derived from partial siRNP purification was useful in defining functional characteristics of this more diverse population of small RNAs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , MicroRNAs/metabolismo , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , MicroRNAs/análise , MicroRNAs/isolamento & purificação , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/isolamento & purificação
20.
PLoS Comput Biol ; 2(7): e86, 2006 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16839192

RESUMO

Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high-scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (T)GCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis, (T)CTATC, is important for alternative splicing regulation of the unc-52 gene.


Assuntos
Processamento Alternativo , Biologia Computacional/métodos , Genômica/métodos , Íntrons , Animais , Sequência de Bases , Caenorhabditis , Caenorhabditis elegans , Sequência Conservada , Evolução Molecular , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...