Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(2): 270-277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37669171

RESUMO

Two probe-based quantitative PCR (qPCR) systems, namely P-Xtt and P-Xtu, were developed to diagnose cereal bacterial leaf streak pathogens Xanthomonas translucens pv. translucens and pv. undulosa, respectively. P-Xtt is specific to pv. translucens, and P-Xtu is specific to pv. undulosa, pv. cerealis, pv. secalis, and pv. pistaciae. P-Xtt and P-Xtu worked on all accessible strains of pv. translucens and pv. undulosa, respectively. Both systems could detect 100 copies of the target gBlock DNA. The two systems could be used in both singleplex qPCR and duplex qPCR with similar efficiencies. On genomic DNA from strains of various X. translucens pathovars, both singleplex and duplex qPCR could specifically detect and differentiate pv. translucens and pv. undulosa. The duplex qPCR could detect pv. translucens and pv. undulosa from genomic DNA of 1,000 bacterial cells. On infected barley and wheat grain samples and on one infected wheat leaf sample, the duplex qPCR showed similar efficiency compared to a previously published qPCR system but with the additional capability of pathovar differentiation. The duplex qPCR system developed in this study will be useful in studies on bacterial leaf streak and detection/differentiation of the pathogens.


Assuntos
Hordeum , Xanthomonas , Hordeum/microbiologia , Triticum/microbiologia , Doenças das Plantas/microbiologia , DNA , Reação em Cadeia da Polimerase
2.
Plant Dis ; 106(11): 2876-2883, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35442047

RESUMO

A probe-based quantitative PCR (qPCR) protocol was developed for detection and evaluation of the wheat bacterial leaf streak pathogen Xanthomonas translucens pathovar (pv.) undulosa. The protocol can also detect X. translucens pv. translucens and X. translucens pv. secalis but can't differentiate the three pathovars. When tested on nontarget DNA (i.e., from plant; bacteria other than X. translucens pv. undulosa, X. translucens pv. translucens, and X. translucens pv. secalis; and culture of microorganisms from wheat grains), the qPCR showed a high specificity. On purified X. translucens pv. undulosa DNA, the qPCR was more sensitive than a loop-mediated isothermal amplification assay. When DNA samples from a set of serial dilutions of X. translucens pv. undulosa cells were tested, the qPCR method could repeatedly generate quantification cycle (Cq) values from the dilutions containing ≥1,000 cells. Since 2 µl of the total 50 µl of DNA was used in one reaction, one qPCR reaction could detect the presence of the bacteria in samples containing as few as 40 bacterial cells. The qPCR could detect the bacteria from both infected grain and leaf tissues. For seed testing, a protocol for template preparation was standardized, which allowed one qPCR reaction to test DNA from the surface of one wheat grain. Thus, the qPCR system could detect X. translucens pv. undulosa, X. translucens pv. translucens, and/or X. translucens pv. secalis in samples where the bacteria had an average concentration of ≥40 cells per grain.


Assuntos
Doenças das Plantas , Xanthomonas , Doenças das Plantas/microbiologia , Xanthomonas/genética , Triticum/microbiologia , Grão Comestível/genética , Reação em Cadeia da Polimerase
3.
Phytopathology ; 111(10): 1743-1750, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33656354

RESUMO

Clubroot caused by Plasmodiophora brassicae is an important disease on cruciferous crops worldwide. Management of clubroot is challenging, largely because of the millions of resting spores produced within an infected root that can survive dormant in the soil for many years. This study was conducted to investigate some of the environmental conditions that may affect the survival of resting spores in the soil. Soil samples containing clubroot resting spores (1 × 107 spores/g soil) were stored at various temperatures for 2 years. Additionally, other samples were buried in soil or kept on the soil surface in the field. The content of P. brassicae DNA and the numbers of viable spores in the samples were assessed by quantitative PCR (qPCR) and pathogenicity bioassays, respectively. The results indicated that 4°C, 20°C, and being buried in the soil were more conductive conditions for spore survival than -20°C, 30°C, and at the soil surface. Most (99.99%) of the spores kept on the soil surface were nonviable, suggesting a negative effect of light on spore viability. Additional experiments confirmed the negative effect of ultraviolet light on spore viability because spores receiving 2 and 3 h ultraviolet light exhibited lower disease potential and contained less DNA content than the nontreated control. Finally, this work confirmed that DNA-based quantification methods such as qPCR can be poor predictors of P. brassicae disease potential because of the presence and persistence of DNA from dead spores.


Assuntos
Plasmodioforídeos , Doenças das Plantas , Solo , Esporos , Temperatura
4.
J Microbiol Methods ; 149: 120-122, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29777739

RESUMO

A commonly used protocol for DNA extraction from Plasmodiophora brassicae was modified by adding an alkaline treatment step to increase the purity of resting spores. The quality of DNA extracted by the modified protocol was improved due to the removal of DNA contamination from host plant cells and other microorganisms.


Assuntos
DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Plasmodioforídeos/genética , Esporos de Protozoários/genética , Brassica napus/parasitologia , Canadá , Doenças das Plantas/parasitologia , Plasmodioforídeos/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...