Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
RSC Adv ; 12(20): 12710-12745, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35496330

RESUMO

The interest in acyl thioureas has continually been escalating owing to their extensive applications in diverse fields, such as synthetic precursors of new heterocycles, pharmacological and materials science, and technology. These scaffolds exhibit a wide variety of biological activities such as antitumor, enzyme inhibitory, anti-bacterial, anti-fungal, and anti-malarial activities and find utilization as chemosensors, adhesives, flame retardants, thermal stabilizers, antioxidants, polymers and organocatalysts. In addition, the synthesis, and applications of coordination complexes of these ligands have also been overviewed. The current review is a continuation of our previous efforts in this area, focusing on the recent advancements during the period 2017 to present.

2.
Int J Biol Macromol ; 198: 157-167, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953808

RESUMO

Helicobacter pylori urease remains a validated drug target for the eradication of pervasive chronic stomach infection that leads to severe human health diseases such as gastritis and stomach cancer. The increased failure of current treatment protocols because of resistance to broadband antibiotics, severe side effects and low compliance underscore the need for a targeted eradication therapy. Therefore, in the present research, we have developed a new series of acetylphenol-based acyl thioureas that can potentially provide a new template for drug candidates to inhibit urease enzyme. Newly synthesized compounds 7a-j were evaluated for urease inhibitory strength using thiourea as a positive control. In vitro inhibitory results revealed that all the tested compounds were significantly potent than the standard drug. The most active lead 7f competitively inhibited the enzyme and displayed an IC50 value of 0.054 ± 0.002 µM, a ~413-fold strong inhibitory potential than thiourea (IC50 = 22.3 ± 0.031 µM). Various insightful structure-activity relationships were developed showing the key structural requirements for potent inhibitory effects. Molecular docking analysis of 7f inside the active pocket of urease suggested several important interactions with amino acid residues such as ILE411, MET637, ARG439, GLN635, ALA636 and ALA440. Finally, pharmacokinetic properties suggested that the tested derivatives are safe to develop as low-molecular-weight drugs to treat ureolytic bacterial infections.


Assuntos
Urease
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...