Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1820(7): 849-58, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22484491

RESUMO

BACKGROUND: In yeast, 14-3-3 proteins bind to hundreds of phosphorylated proteins and play a role in the regulation of many processes including tolerance to NaCl. However, the mechanism of 14-3-3 involvement in the cell answer to salt or osmotic stresses is weakly understood. METHODS: We studied the role of the Saccharomyces cerevisiae 14-3-3 homologs Bmh1 and Bmh2 in the regulation of alkali-metal-cation homeostasis using the genetic-interaction approach. Obtained results were confirmed with the Bimolecular-Fluorescence-Complementation method. RESULTS: Deletion of BMH1, encoding the major 14-3-3 isoform, resulted in an increased sensitivity to Na+, Li+ and K+ and to cationic drugs but did not affect membrane potential. This bmh1Δ phenotype was complemented by overexpression of BMH2. Testing the genetic interaction between BMH genes and genes encoding plasma-membrane cation transporters revealed, that 14-3-3 proteins neither interact with the potassium uptake systems, nor with the potassium-specific channel nor with the Na+(K+)-ATPases. Instead, a genetic interaction was identified between BMH1 and NHA1 which encodes an Na+(K+)/H+ antiporter. In addition, a physical interaction between 14-3-3 proteins and the Nha1 antiporter was shown. This interaction does not depend on the phosphorylation of the Nha1 antiporter by Hog1 kinase. Our results uncovered a previously unknown interaction partner of yeast 14-3-3 proteins and provided evidence for the previously hypothesized involvement of Bmh proteins in yeast salt tolerance. GENERAL SIGNIFICANCE: Our results showed for the first time that the yeast 14-3-3 proteins and an alkali-metal-cation efflux system interact and that this interaction enhances the cell survival upon salt stress.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cátions/metabolismo , Homeostase/fisiologia , Metais Alcalinos/metabolismo , Prótons , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Proteínas 14-3-3/metabolismo , Western Blotting , Sobrevivência Celular , Citometria de Fluxo , Potenciais da Membrana , Fosforilação , Saccharomyces cerevisiae/crescimento & desenvolvimento
2.
FEMS Yeast Res ; 12(4): 439-46, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22329368

RESUMO

Saccharomyces cerevisiae extrudes K(+) cations even when potassium is only present in scarce amounts in the environment. Lost potassium is taken up by the Trk1 and Trk2 uptake systems. If the Trk transporters are absent or nonfunctional, the efflux of potassium is significantly diminished. A series of experiments with strains lacking various combinations of potassium efflux and uptake systems revealed that all three potassium-exporting systems the Nha1 antiporter, Ena ATPase and Tok1 channel contribute to potassium homeostasis and are active upon potassium limitation in wild-type cells. In trk1Δ trk2Δ mutants, the potassium efflux via potassium exporters Nha1 and Ena1 is diminished and can be restored either by the expression of TRK1 or deletion of TOK1. In both cases, the relative hyperpolarization of trk1Δ trk2Δ cells is decreased. Thus, it is the plasma-membrane potential which serves as the common mechanism regulating the activity of K(+) exporting systems. There is a continuous uptake and efflux of potassium in yeast cells to regulate their membrane potential and thereby other physiological parameters, and the cells are able to quickly and efficiently compensate for a malfunction of potassium transport in one direction by diminishing the transport in the other direction.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cátions/metabolismo , Membrana Celular/metabolismo , Potenciais da Membrana , Potássio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Fungal Biol ; 114(2-3): 144-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20960970

RESUMO

Saccharomyces cerevisiae yeast cells serve as a model to elucidate the bases of salt tolerance and potassium homeostasis regulation in eukaryotic cells. In this study, we show that two widely used laboratory strains, BY4741 and W303-1A, differ not only in cell size and volume but also in their relative plasma-membrane potential (estimated with a potentiometric fluorescent dye diS-C3(3) and as Hygromycin B sensitivity) and tolerance to alkali-metal cations. W303-1A cells and their mutant derivatives lacking either uptake (trk1 trk2) or efflux (nha1) systems for alkali-metal cations are more tolerant to toxic sodium and lithium cations but also more sensitive to higher external concentrations of potassium than BY4741 cells and their mutants. Moreover, our results suggest that though the two strains do not differ in the total potassium content, the regulation of intracellular potassium homeostasis is probably not the same in BY4741 and W303-1A cells.


Assuntos
Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/fisiologia , Tolerância ao Sal/fisiologia , Transporte Biológico , Cátions , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Regulação Fúngica da Expressão Gênica , Homeostase , Higromicina B/farmacologia , Lítio/metabolismo , Lítio/farmacologia , Potenciais da Membrana , Mutação , Potássio/metabolismo , Potássio/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sódio/metabolismo , Sódio/farmacologia , Especificidade da Espécie
4.
Biochim Biophys Acta ; 1800(12): 1241-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20713131

RESUMO

BACKGROUND: NHAoc/NHA2 is highly and selectively expressed in osteoclasts and plays a role(s) in normal osteoclast differentiation, apoptosis and bone resorptive function in vitro. Extensive mutational analysis of a bacterial homologue, NhaA, has revealed a number of amino acid residues essential for its activity. Some of these residues are evolutionarily conserved and have been shown to be essential not only for activity of NhaA in bacteria, but also of NHAoc/NHA2 in eukaryotes. METHODS: The salt-sensitive Saccharomyces cerevisiae strain BW31a was used for heterologous expression of mutants of NHAoc/NHA2. Membrane expression of NHAoc/NHA2 was confirmed by confocal microscopy. Intracellular concentration of Na+ (a measure of Na+ antiporter activity) was estimated by atomic absorption spectroscopy. The growth phenotypes of cells expressing NHAoc/NHA2 mutants were studied on YNB agar supplemented with NaCl and by growth curves in YNB broth. RESULTS: Mutations in amino acid residues V161 and F357 reduced the ability of transfected BW31a cells to remove intracellular sodium and to grow in NaCl-containing medium. Yeast expressing the double mutant F357 F437 cannot grow in 0.4M NaCl, suggesting that these residues are also essential for antiporter activity. CONCLUSIONS: Evolutionarily conserved amino acids are required for full antiporter function. GENERAL SIGNIFICANCE: Mutations in these amino acid residues may impact NHAoc activity and therefore osteoclast function in vitro and in vivo.


Assuntos
Antiporters/genética , Antiporters/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Trocadores de Sódio-Hidrogênio/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Membrana Celular/metabolismo , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Transporte de Íons , Microscopia Confocal , Dados de Sequência Molecular , Fenótipo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo , Transformação Genética
5.
FEMS Yeast Res ; 10(5): 508-17, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20491939

RESUMO

A new YNB medium containing very low concentrations of alkali metal cations has been developed to carry out experiments to study potassium homoeostasis. Physiological characterization of Saccharomyces cerevisiae BY4741 strain and the corresponding mutant lacking the main potassium uptake systems (trk1 trk2) under potassium nonlimiting and limiting concentrations was performed, and novel important differences between both strains were found. At nonlimiting concentrations of KCl, the two strains had a comparable cell size and potassium content. Nevertheless, mutants were hyperpolarized, had lower pH and extruded fewer protons compared with the BY4741 strain. Upon transfer to K(+)-limiting conditions, cells of both strains became hyperpolarized and their cell volume and K(+) content diminished; however, the decrease was more relevant in BY4741. In low potassium, trk1 trk2 cells were not able to accomplish the cell cycle to the same extent as in BY4741. Moreover, K(+) limitation triggered a high-affinity K(+)/Rb(+) uptake process only in BY4741, with the highest affinity being reached as soon as 30 min after transfer to potassium-limiting conditions. By establishing basic cellular parameters under standard growth conditions, this work aims to establish a basis for the investigation of potassium homoeostasis at the system level.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Deleção de Genes , Potássio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte de Cátions/genética , Ciclo Celular , Membrana Celular/fisiologia , Meios de Cultura/química , Citoplasma/química , Concentração de Íons de Hidrogênio , Potenciais da Membrana/fisiologia , Rubídio/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...