Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631810

RESUMO

Turbidity is an important water quality parameter, especially for drinking water. The ability to actively monitor the turbidity level of drinking water distribution systems is of critical importance to the safety and wellbeing of the public. Traditional turbidity monitoring methods involve the manual collection of water samples at set locations and times followed by laboratory analysis, which are labor intensive and time consuming. Fiber-optic measurement permits real-time, in situ turbidity monitoring. But the current technology is based on plastic fibers, which suffer from high optical attenuation and hence are unsuitable for large-scale remote monitoring. In this paper, we report the demonstration of a fiber-optic turbidity sensor based on multi-mode glass fibers. The system uses a single fiber to both deliver laser light into the water sample and collect the back-scattered light for detection. A balanced detection scheme is utilized to remove the common-mode noise to enhance the turbidity sensitivity. Highly linear turbidity responses are obtained and a turbidity resolution as low as 0.1 NTU is achieved. The test unit is also shown to have excellent reproducibility against repeated measurements and good stability against temperature changes. Turbidity measurement in real environmental matrices such as tap water and pond water is also reported with an assessment of the impact of flow rate. This work demonstrates the feasibility of future large-scale distributed fiber-optic turbidity monitoring networks.

2.
Chemosphere ; 256: 127049, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32447107

RESUMO

In recent decades the electro-Fenton process has widely been utilized for removing recalcitrant compounds. However, this process is accompanied by several problems such as limited working pH range, production of significant amount of iron sludge, and incapability in reusing used iron ions. Hence, the heterogeneous electro-Fenton process is a convenient way to address these problems. One of the shortcomings of this method, in comparison with the homogeneous electro-Fenton process, is its lower reaction rate. In the first phase of this study, a heterogeneous Fe-based nanocatalyst was prepared. After optimizing the affecting parameters, three transition metals (M: Cu, Co and, Cr) were used in the second phase of the study to improve the performance of this nanocatalyst in removing the indicator pollutant (acid blue 25). The characteristics of nanocatalysts were determined via FESEM, XRD, FTIR, and N2 adsorption-desorption techniques. The results indicated an enhancement in dye removal efficiency (nearly 8 percent), and the reaction rate (nearly 64 percent) due to the nanocatalysts improved by the presence of transition metals. The reactions with Fe-based nanocatalyst containing copper ions in pH = 3, initial dye concentration = 200 mg L-1, I = 3.57 mA cm-2, nanocatalyst concentration = 100 mg L-1, electrodes angular velocity = 50 rpm, Na2SO4 concentration = 0.01 M were capable of removing 97% of dye, 79% of COD and, 65% of TOC. The nanocatalysts were used in 5 cycles, and the dye removal efficiency did not drop considerably, a feature that adds to their importance from an economic point of view. The concentration of leached transition metals into the solution was measured using the ICP-AES technique, which was less than the allowable Iranian standard concentration of discharge into the surface water bodies, thus no need for secondary treatment of wastewater.


Assuntos
Metais/química , Poluentes Químicos da Água/química , Adsorção , Catálise , Eletrodos , Peróxido de Hidrogênio/química , Irã (Geográfico) , Ferro/química , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...